|
Ultrafast two-dimensional x-ray imager with temporal fiducial pulses for laser-produced plasmas
Zheng-Dong Liu(刘正东), Jia-Yong Zhong(仲佳勇), Xiao-Hui Yuan(远晓辉), Ya-Peng Zhang(张雅芃), Jia-Wen Yao(姚嘉文), Zuo-Lin Ma(马作霖), Xiang-Yan Xu(徐向晏), Yan-Hua Xue(薛彦华), Zhe Zhang(张喆), Da-Wei Yuan(袁大伟), Min-Rui Zhang(张敏睿), Bing-Jun Li(李炳均), Hao-Chen Gu(谷昊琛), Yu Dai(戴羽), Cheng-Long Zhang(张成龙), Yu-Feng Dong(董玉峰), Peng Zhou(周鹏), Xin-Jie Ma(马鑫杰), Yun-Feng Ma(马云峰), Xue-Jie Bai(白雪洁), Gao-Yang Liu(刘高扬), Jin-Shou Tian(田进寿), Gang Zhao(赵刚), and Jie Zhang(张杰)
Chin. Phys. B, 2023, 32 (11):
110702.
DOI: 10.1088/1674-1056/ace766
It is challenging to make an ultrafast diagnosis of the temporal evolution of small and short-lived plasma in two dimensions. To overcome this difficulty, we have developed a well-timed diagnostic utilizing an x-ray streak camera equipped with a row of multi-pinhole arrays. By processing multiple sets of one-dimensional streaked image data acquired from various pinholes, we are capable of reconstructing high-resolution two-dimensional images with a temporal resolution of 38 ps and a spatial resolution of 18 μm. The temporal fiducial pulses accessed from external sources can advance the precise timing and accurately determine the arrival time of the laser. Moreover, it can correct the nonlinear sweeping speed of the streak camera. The effectiveness of this diagnostic has been successfully verified at the Shenguang-II laser facility, providing an indispensable tool for observing complex physical phenomena, such as the implosion process of laser-fusion experiments.
|