ELECTROMAGNETISM, OPTICS, ACOUSTICS, HEAT TRANSFER, CLASSICAL MECHANICS, AND FLUID DYNAMICS |
Prev
Next
|
|
|
Comprehensive analysis of pure-quartic soliton dynamics in a passively mode-locked fiber laser |
Lie Liu(刘列)1, Ying Han(韩颖)1, Jiayu Huo(霍佳雨)1,†, Honglin Wen(文红琳)1, Ge Wu(吴戈)2, and Bo Gao(高博)1 |
1 College of Communication Engineering, Jilin University, Changchun 130012, China; 2 College of Electronic Science and Engineering, Jilin University, Changchun 130012, China |
|
|
Abstract The understanding of soliton dynamics promotes the development of ultrafast laser technology. High-energy pure-quartic solitons (PQSs) have gradually become a hotspot in recent years. Herein, we numerically study the influence of the gain bandwidth, saturation power, small-signal gain, and output coupler on PQS dynamics in passively mode-locked fiber lasers. The results show that the above four parameters can affect PQS dynamics. Pulsating PQSs occur as we alter the other three parameters when the gain bandwidth is 50 nm. Meanwhile, PQSs evolve from pulsating to erupting and then to splitting as the other three parameters are altered when the gain bandwidth is 10 nm, which can be attributed to the existence of the spectral filtering effect and intra-cavity fourth-order dispersion. These findings provide new insights into PQS dynamics in passively mode-locked fiber lasers.
|
Received: 19 January 2023
Revised: 13 March 2023
Accepted manuscript online: 15 March 2023
|
PACS:
|
42.65.Tg
|
(Optical solitons; nonlinear guided waves)
|
|
42.65.Sf
|
(Dynamics of nonlinear optical systems; optical instabilities, optical chaos and complexity, and optical spatio-temporal dynamics)
|
|
42.55.Wd
|
(Fiber lasers)
|
|
42.60.Fc
|
(Modulation, tuning, and mode locking)
|
|
Fund: We acknowledge the financial support from Science and Technology Project of the Jilin Provincial Department of Education (Grant No. JJKH20231171KJ). |
Corresponding Authors:
Jiayu Huo
E-mail: huojy@jlu.edu.cn
|
Cite this article:
Lie Liu(刘列), Ying Han(韩颖), Jiayu Huo(霍佳雨), Honglin Wen(文红琳), Ge Wu(吴戈), and Bo Gao(高博) Comprehensive analysis of pure-quartic soliton dynamics in a passively mode-locked fiber laser 2023 Chin. Phys. B 32 114209
|
[1] Petersen C R, Moller U, Kubat I, Zhou B, Dupont S, Ramsay J, Benson T, Sujecki S, Abdel-Moneim N, Tang Z, Furniss D, Seddon A and Bang O 2014 Nat. Photonics 8 830 [2] Xu C and Wise F W 2013 Nat. Photonics 7 875 [3] Brida D. and Leitenstorfer A 2012 Lasers, Sources, and Related Photonic Device, San Diego, California [4] Zheng S, Ghandehari M and Ou J 2016 Sensors and Actuators B:Chemical 223 324 [5] Nishizawa N 2014 Jpn. J. Appl. Phys. 53 090101 [6] Han Y, Guo Y B, Gao B, Ma C Y, Zhang R H and Zhang H 2020 Prog. Quantum Electron. 71 100264 [7] Ma C, Wang C, Gao B, Adams J, Wu G and Zhang H 2019 Appl. Phys. Rev. 6 041304 [8] Agrawal G P 2010 Applications of Nonlinear Fiber Optics 3rd (Beijing:Publishing House of Electronics Industry) pp. 21-37 [9] Akhmediev N N, Buryak A V and Karlsson M 1994 Opt. Commun. 110 540 [10] Karlsson M and Höök A 1994 Opt. Commun. 104 303 [11] Karpman V I 1994 Phys. Lett. A 193 355 [12] Höök A and Karlsson M 1993 Opt. Lett. 18 1388 [13] Blanco-Redondo A, de Sterke C M, Sipe J E, Krauss T F, Eggleton B J and Husko C 2016 Nat. Commun. 7 10427 [14] Blanco-Redondo A, de Sterke C M, Husko C and Eggleton B J 2017 2017 Conference on Lasers and Electro-Optics Europe & European Quantum Electronics Conference (CLEO/Europe-EQEC), Munich, Germany [15] de Sterke C M, Runge A F J, Hudson D D and Blanco-Redondo A 2021 APL Photonics 6 091101 [16] Cardoso W B 2019 Phys. Lett. A 383 125898 [17] Roy S and Biancalana F 2013 Phys. Rev. A 87 025801 [18] Yao S, Liu K and Yang C 2021 Opt. Express 29 8312 [19] Taheri H and Matsko A B 2019 Opt. Lett. 44 3086 [20] Liu K, Yao S and Yang C 2021 Opt. Lett. 46 993 [21] Lo C W, Stefani A, de Sterke C M and Blanco-Redondo A 2018 Opt. Express 26 7786 [22] Tam K K K, Alexander T J, Blanco-Redondo A and de Sterke C M 2020 Phys. Rev. A 101 043822 [23] Tam K, Alexander T, Blanco-Redondo A, Sterke C 2019 Conference on Lasers and Electro-Optics Europe & European Quantum Electronics Conference (CLEO/Europe-EQEC), Munich, Germany [24] Han Y, Gao B, Li Y Y, Huo J Y and Guo Y B 2020 Optik 223 165381 [25] Han Y, Gao B, Wu G, Huo J, Chen B, Li Y, Guo Y and Liu L 2022 Opt. Laser Technol. 148 107690 [26] Han Y, Gao B, Huo J, Ma C, Wu G, Li Y, Chen B, Guo Y and Liu L 2022 Chin. Phy. B 31 074208 [27] Runge A F J, Hudson D D, Tam K K K, de Sterke C M and Blanco-Redondo A 2020 Nat. Photonics 14 492 [28] Runge A, Hudson D D, Sterke C, Blanco-Redondo A 2019 Conference on Lasers and Electro-Optics Europe & European Quantum Electronics Conference (CLEO/Europe-EQEC), Munich, Germany [29] Tam K K K, Alexander T J, Blanco-Redondo A and Martijn de Sterke C 2019 Opt. Lett. 44 3306 [30] Zhang Z X, Luo M, Chen J X, Chen L H, Liu M, Luo A P, Xu W C and Luo Z C 2022 Opt. Lett. 47 1750 [31] Zhao K, Gao C, Xiao X and Yang C 2021 Opt. Lett. 46 761 [32] Han Y, Gao B, Hao Y B, Ponraj J S, Ma C Y, Huo J Y, Wu G, Li Y Y, Al-Amoudi B O, Wageh S, Al-Ghamdi A A, Liu L and Zhang H 2022 J. Phys. B:Atom. Mol. Opt. Phys. 55 222001 [33] Wang Y, Wang C, Zhang F, Guo J, Ma C, Huang W, Song Y, Ge Y, Liu J and Zhang H 2020 Rep. Prog. Phys. 83 116401 [34] Peng J, Zhao Z, Boscolo S, Finot C, Sugavanam S, Churkin D V and Zeng H 2021 Laser Photonics Rev. 15 2000132 [35] Wu X, Peng J, Boscolo S, Zhang Y, Finot C and Zeng H 2021 Laser Photonics Rev. 16 2100191 [36] Krupa K, Kardaś T M and Stepanenko Y 2022 Laser Photonics Rev. 16 2100646 [37] Zhang Y, Cui Y, Huang L, Tong L and Liu X 2020 Opt. Lett. 45 6246 [38] Zhou Y, Ren Y X, Shi J and Wong K K Y 2022 Opt. Express 30 21931 [39] Wang B, Han H, Yu L, Wang Y and Dai C 2022 Nanophotonics 11 129 [40] Dutta Gupta B, Das Chowdhury S, Dhirhe D and Pal M 2020 J. Opt. Soc. Am. B 37 2278 [41] Soto-Crespo J M, Akhmediev N and Ankiewicz A 2000 Phys. Rev. Lett. 85 2937 [42] Peng J and Zeng H 2018 Laser Photonics Rev. 12 1800009 [43] Akhmediev N, Soto-Crespo J, Grapinet M and Grelu P 2005 J. Nonlinear Opt. Phys. 14 177 [44] He Z, Du Y, Zeng C, Jiang B, Mao D, Sun Z and Zhao J 2021 Phys. Rev. A 103 053516 [45] Du Y, He Z, Gao Q, Liu L, Zeng C and Mao D 2022 Opt. Lett. 47 3323 [46] Du Y, Zeng C, He Z, Gao Q, Mao D and Zhao J 2021 Phys. Rev. A 104 023503 [47] Latas S C V and Ferreira M F S 2010 Opt. Lett. 35 1771 [48] Descalzi O and Cartes C 2017 Appl. Sci. 7 887 [49] Latas S C V and Ferreira M F S 2011 Opt. Lett. 38 3085 [50] Du Y, Han M and Shu X 2020 Opt. Lett. 45 666 [51] Du Y and Shu X 2018 Opt. Express 26 5564 [52] Dongdong H, Jiayue Z, Kaili R, Yipeng Z, Zhanqiang H, Feng Z and Jiamin G 2022 Acta Optica Sinica 42 0706001 |
No Suggested Reading articles found! |
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
Altmetric
|
blogs
Facebook pages
Wikipedia page
Google+ users
|
Online attention
Altmetric calculates a score based on the online attention an article receives. Each coloured thread in the circle represents a different type of online attention. The number in the centre is the Altmetric score. Social media and mainstream news media are the main sources that calculate the score. Reference managers such as Mendeley are also tracked but do not contribute to the score. Older articles often score higher because they have had more time to get noticed. To account for this, Altmetric has included the context data for other articles of a similar age.
View more on Altmetrics
|
|
|