Please wait a minute...
Chin. Phys. B, 2023, Vol. 32(11): 110307    DOI: 10.1088/1674-1056/acdc0f
GENERAL Prev   Next  

Deterministic remote preparation of multi-qubit equatorial states through dissipative channels

Liu-Yong Cheng(程留永)1,†, Shi-Feng Zhang(张世凤)1, Zuan Meng(孟钻)1, Hong-Fu Wang(王洪福)2, and Shou Zhang(张寿)2
1 School of Physics and Information Engineering, Shanxi Normal University, Taiyuan 030031, China;
2 Department of Physics, College of Science, Yanbian University, Yanji 133002, China
Abstract  We investigate the influence of a noisy environment on the remote preparation of the multi-qubit equatorial state, and specifically deduce the final states and fidelities of the remote preparation of the three-qubit and four-qubit equatorial states under diverse types of noisy environments, namely, amplitude damping, bit flip, phase damping, phase flip, bit-phase flip, depolarization, and non-Markov environments. The results show that when the decoherence factors of the front six noises are equal, the influence degrees of phase damped noise, bit flip noise, phase flip noise, and bit-phase flip noise are similar, while the information loss caused by the amplitude damped noise and depolarizing noise is less. In particular, the bit flip noise and depolarizing noise may have more complex effects on the remote state preparation (RSP) schemes depending on the phase information of the target states, even for the ideal cases where the fidelity values are always 1 for specific phase relations. In the non-Markov environment, owing to the back and forth of information between the environment and systems, fidelities exhibit oscillating behavior and the minimum value may stay greater than zero for a long evolutionary time. These results are expected to have potential applications for understanding and avoiding the influence of noise on remote quantum communication and quantum networks.
Keywords:  remote state preparation      dissipative channel      equatorial state      fidelity  
Received:  25 February 2023      Revised:  10 May 2023      Accepted manuscript online:  07 June 2023
PACS:  03.67.-a (Quantum information)  
  03.67.Hk (Quantum communication)  
  03.65.Ud (Entanglement and quantum nonlocality)  
Fund: Project supported by the Fundamental Research Program of Shanxi Province (Grant No. 202203021211260).
Corresponding Authors:  Liu-Yong Cheng     E-mail:  lycheng@sxnu.edu.cn

Cite this article: 

Liu-Yong Cheng(程留永), Shi-Feng Zhang(张世凤), Zuan Meng(孟钻), Hong-Fu Wang(王洪福), and Shou Zhang(张寿) Deterministic remote preparation of multi-qubit equatorial states through dissipative channels 2023 Chin. Phys. B 32 110307

[1] Bennett C H, Brassard G, Crépeau C, et al. 1993 Phys. Rev. Lett. 70 1895
[2] Bouwmeester D, Pan J W, Mattle K, et al. 1997 Nature 390 575
[3] Gottesman D 2000 Phys. Rev. A 61 042311
[4] Singh S K and Srikanth R 2005 Phys. Rev. A 71 012328
[5] Long G L and Liu X S 2002 Phys. Rev. A 65 032302
[6] Deng F G and Long G L 2004 Phys. Rev. A 69 052319
[7] Zhang W, Ding D S, Sheng Y B, et al. 2017 Phys. Rev. Lett. 118 220501
[8] Zhou L, Sheng Y B and Long G L 2020 Sci. Bull. 65 12
[9] Bennett C H, DiVincenzo D P, Shor P W, et al. 2001 Phys. Rev. Lett. 87 077902
[10] Pati A K 2000 Phys. Rev. A 63 014302
[11] Berry D W and Sanders B C 2003 Phys. Rev. Lett. 90 057901
[12] Li J F, Liu J M, Feng X L and Oh C H 2016 Quantum Inf. Process. 15 2155
[13] Nguyen B A, Cao T B, Nung V D and Kim J 2011 Adv. Nat. Sci.:Nanosci. Nanotechnol. 2 035009
[14] Nguyen B A 2010 Opt. Commun. 283 4113
[15] Liu H H, Cheng L Y, Shao X Q, et al. 2011 Int. J. Theor. Phys. 50 3023
[16] Zhang C Y, Bai M Q and Zhou S Q 2018 Quantum Inf. Process. 17 146
[17] Gong R and Jiang M 2022 J. Opt. Soc. Am. B 39 3066
[18] Gong R, Wei Y, Xue S and Jiang M 2022 Quantum Inf. Process. 21 341
[19] Huang L and Zhao H X 2017 Int. J. Theor. Phys. 56 678
[20] Chen X B, Ma S Y, Su Y, et al. 2012 Quantum Inf. Process. 11 1653
[21] Kiktenko E O, Popov A A and Fedorov A K 2016 Phys. Rev. A 93 62305
[22] Zhang D, Zha X W, Duan Y J and Wei Z H 2016 Int. J. Theor. Phys. 55 440
[23] Zhang D, Zha X W, Duan Y J and Yang Y Q 2016 Quantum Inf. Process. 15 2169
[24] Chen X B, Sun Y R, Xu G and Jia H Y 2017 Quantum Inf. Process. 16 244
[25] Gu J R and Liu J M 2022 Commun. Theor. Phys. 74 075101
[26] Paris M G A, Cola M and Bonifacio R 2003 J. Opt. B 5 S360
[27] Kurucz Z, Adam P, Kis Z and Janszky J 2005 Phys. Rev. A 72 052315
[28] Rådmark M, Wieśniak M, Żukowski M and Bourennane M 2013 Phys. Rev. A 88 032304
[29] Xiang G Y, Li J, Yu B and Guo G C 2015 Phys. Rev. A 72 012315
[30] Liu W T, Wu W and Ou B Q, et al. 2007 Phys. Rev. A 76 022308
[31] Barreiro J T, Wei T C and Kwiat P G 2010 Phys. Rev. Lett. 105 030407
[32] Wei D X, Luo J and Yang X D 2004 Chin. Phys. 13 817
[33] Nielsen M A and Chuang I L 2000 Quantum Computation and Quantum Information (Cambridge University Press)
[34] Guan X W, Chen X B and Wang L C 2014 Int. J. Theor. Phys. 53 2236
[35] Li J F, Liu J M and Xu X Y 2015 Quantum Inf. Process. 14 3465
[36] Wang M M and Qu Z G 2016 Quantum Inf. Process. 15 4805
[37] Wang M M, Qu Z G and Wang W 2017 Quantum Inf. Process. 16 140
[38] Li Y H, Wang Z S and Zhou H Q 2019 Int. J. Theor. Phys. 58 1172
[39] Zhang P, Ma S and Gong L 2019 Int. J. Theor. Phys. 58 2795
[40] Qian Y, Xue S and Jiang M 2020 Phys. Lett. A 384 126204
[41] Dash T, Sk R and Panigrahi P K 2020 Opt. Commun. 464 125518
[42] Xu Z, Wei Y, Jiang C and Jiang M 2022 Chin. Phys. B 31 040304
[43] Huelga S F, Vaccaro J A, Cheflfles A and Plenio M B 2001 Phys. Rev. A 63 042303
[44] Wu L A and Lidar D A 2002 Phys. Rev. A 67 050303
[45] Buscemi F, DAriano G M and Macchiavello C 2005 Phys. Rev. A 71 042327
[46] Rezakhani A T, Siadatnejad S and Ghaderi A H 2005 Phys. Lett. A 336 278
[47] Kang P, Dai H Y, Wei J H and Zhang M 2016 Phys. Rev. A 94 042304
[48] Chen Q Q, Xia Y and Song J 2011 Opt. Commun. 284 5031
[49] Choudhury B S and Dhara A 2015 Quantum Inf. Process. 14 373
[50] Li X H and Ghose S 2015 Quantum Inf. Process. 14 4585
[51] Adepoju A G, Falaye B J and Sun G H 2017 Phys. Lett. A 381 581
[52] Sun Y R, Xu G and Chen X B 2018 IEEE Access 7 2811
[53] Wei J H, Shi L, Zhu Y, et al. 2018 Quantum Inf. Process. 17 70
[54] Sun Y R, Chen X B, Xu G, et al. 2019 Sci. Rep. 9 2081
[55] Sun Y R, Chen Y L Ahmad H and Wei Z H 2019 Computers, Materials and Continua 59 215
[56] Zha X W, Wang M R and Jiang R X 2020 Chin. Phys. B 29 040304
[57] Wang M R, Xiang Z and Ren P 2022 Mod. Phys. Lett. B 36 2250078
[58] Bellomo B, Lo Franco R and Compagno G 2008 Phys. Rev. A 77 032342
[59] Peng J Y and Xiang Y 2021 Opt. Commun. 499 127285
[1] Quantitative determination of the critical points of Mott metal-insulator transition in strongly correlated systems
Yuekun Niu(牛月坤), Yu Ni(倪煜), Jianli Wang(王建利), Leiming Chen(陈雷鸣), Ye Xing(邢晔), Yun Song(宋筠), and Shiping Feng(冯世平). Chin. Phys. B, 2024, 33(1): 017102.
[2] Discrete multi-step phase hologram for high frequency acoustic modulation
Meng-Qing Zhou(周梦晴), Zhao-Xi Li(李照希), Yi Li(李怡), Ye-Cheng Wang(王业成), Juan Zhang(张娟), Dong-Dong Chen(谌东东), Yi Quan(全熠), Yin-Tang Yang(杨银堂), and Chun-Long Fei(费春龙). Chin. Phys. B, 2024, 33(1): 014303.
[3] High-fidelity topological quantum state transfersin a cavity-magnon system
Xi-Xi Bao(包茜茜), Gang-Feng Guo(郭刚峰), Xu Yang(杨煦), and Lei Tan(谭磊). Chin. Phys. B, 2023, 32(8): 080301.
[4] Engineering topological state transfer in four-period Su-Schrieffer-Heeger chain
Xi-Xi Bao(包茜茜), Gang-Feng Guo(郭刚峰), and Lei Tan(谭磊). Chin. Phys. B, 2023, 32(2): 020301.
[5] Performance of entanglement-assisted quantum codes with noisy ebits over asymmetric and memory channels
Ji-Hao Fan(樊继豪), Pei-Wen Xia(夏沛文), Di-Kang Dai(戴迪康), and Yi-Xiao Chen(陈一骁). Chin. Phys. B, 2023, 32(12): 120304.
[6] Universal order-parameter and quantum phase transition for two-dimensional q-state quantum Potts model
Yan-Wei Dai(代艳伟), Sheng-Hao Li(李生好), and Xi-Hao Chen(陈西浩). Chin. Phys. B, 2022, 31(7): 070502.
[7] Experimental realization of quantum controlled teleportation of arbitrary two-qubit state via a five-qubit entangled state
Xiao-Fang Liu(刘晓芳), Dong-Fen Li(李冬芬), Yun-Dan Zheng(郑云丹), Xiao-Long Yang(杨小龙), Jie Zhou(周杰), Yu-Qiao Tan(谭玉乔), and Ming-Zhe Liu(刘明哲). Chin. Phys. B, 2022, 31(5): 050301.
[8] Deterministic remote state preparation of arbitrary three-qubit state through noisy cluster-GHZ channel
Zhihang Xu(许智航), Yuzhen Wei(魏玉震), Cong Jiang(江聪), and Min Jiang(姜敏). Chin. Phys. B, 2022, 31(4): 040304.
[9] Alternative non-Gaussianity measures for quantum states based on quantum fidelity
Cheng Xiang(向成), Shan-Shan Li(李珊珊), Sha-Sha Wen(文莎莎), and Shao-Hua Xiang(向少华). Chin. Phys. B, 2022, 31(3): 030306.
[10] Passively stabilized single-photon interferometer
Hai-Long Liu(刘海龙), Min-Jie Wang(王敏杰), Jia-Xin Bao(暴佳鑫), Chao Liu(刘超), Ya Li(李雅), Shu-Jing Li(李淑静), and Hai Wang(王海). Chin. Phys. B, 2022, 31(11): 110306.
[11] Quantum multicast schemes of different quantum states via non-maximally entangled channels with multiparty involvement
Yan Yu(于妍), Nan Zhao(赵楠), Chang-Xing Pei(裴昌幸), and Wei Li(李玮). Chin. Phys. B, 2021, 30(9): 090302.
[12] Controlled quantum teleportation of an unknown single-qutrit state in noisy channels with memory
Shexiang Jiang(蒋社想), Bao Zhao(赵宝), and Xingzhu Liang(梁兴柱). Chin. Phys. B, 2021, 30(6): 060303.
[13] Realization of adiabatic and diabatic CZ gates in superconducting qubits coupled with a tunable coupler
Huikai Xu(徐晖凯), Weiyang Liu(刘伟洋), Zhiyuan Li(李志远), Jiaxiu Han(韩佳秀), Jingning Zhang(张静宁), Kehuan Linghu(令狐克寰), Yongchao Li(李永超), Mo Chen(陈墨), Zhen Yang(杨真), Junhua Wang(王骏华), Teng Ma(马腾), Guangming Xue(薛光明), Yirong Jin(金贻荣), and Haifeng Yu(于海峰). Chin. Phys. B, 2021, 30(4): 044212.
[14] Efficient scheme for remote preparation of arbitrary n-qubit equatorial states
Xin-Wei Zha(查新未), Min-Rui Wang(王敏锐), Ruo-Xu Jiang(姜若虚). Chin. Phys. B, 2020, 29(4): 040304.
[15] Average fidelity estimation of twirled noisy quantum channel using unitary 2t-design
Linxi Zhang(张林曦), Changhua Zhu(朱畅华), Changxing Pei(裴昌幸). Chin. Phys. B, 2019, 28(1): 010304.
No Suggested Reading articles found!