|
|
Deterministic remote preparation of multi-qubit equatorial states through dissipative channels |
Liu-Yong Cheng(程留永)1,†, Shi-Feng Zhang(张世凤)1, Zuan Meng(孟钻)1, Hong-Fu Wang(王洪福)2, and Shou Zhang(张寿)2 |
1 School of Physics and Information Engineering, Shanxi Normal University, Taiyuan 030031, China; 2 Department of Physics, College of Science, Yanbian University, Yanji 133002, China |
|
|
Abstract We investigate the influence of a noisy environment on the remote preparation of the multi-qubit equatorial state, and specifically deduce the final states and fidelities of the remote preparation of the three-qubit and four-qubit equatorial states under diverse types of noisy environments, namely, amplitude damping, bit flip, phase damping, phase flip, bit-phase flip, depolarization, and non-Markov environments. The results show that when the decoherence factors of the front six noises are equal, the influence degrees of phase damped noise, bit flip noise, phase flip noise, and bit-phase flip noise are similar, while the information loss caused by the amplitude damped noise and depolarizing noise is less. In particular, the bit flip noise and depolarizing noise may have more complex effects on the remote state preparation (RSP) schemes depending on the phase information of the target states, even for the ideal cases where the fidelity values are always 1 for specific phase relations. In the non-Markov environment, owing to the back and forth of information between the environment and systems, fidelities exhibit oscillating behavior and the minimum value may stay greater than zero for a long evolutionary time. These results are expected to have potential applications for understanding and avoiding the influence of noise on remote quantum communication and quantum networks.
|
Received: 25 February 2023
Revised: 10 May 2023
Accepted manuscript online: 07 June 2023
|
PACS:
|
03.67.-a
|
(Quantum information)
|
|
03.67.Hk
|
(Quantum communication)
|
|
03.65.Ud
|
(Entanglement and quantum nonlocality)
|
|
Fund: Project supported by the Fundamental Research Program of Shanxi Province (Grant No. 202203021211260). |
Corresponding Authors:
Liu-Yong Cheng
E-mail: lycheng@sxnu.edu.cn
|
Cite this article:
Liu-Yong Cheng(程留永), Shi-Feng Zhang(张世凤), Zuan Meng(孟钻), Hong-Fu Wang(王洪福), and Shou Zhang(张寿) Deterministic remote preparation of multi-qubit equatorial states through dissipative channels 2023 Chin. Phys. B 32 110307
|
[1] Bennett C H, Brassard G, Crépeau C, et al. 1993 Phys. Rev. Lett. 70 1895 [2] Bouwmeester D, Pan J W, Mattle K, et al. 1997 Nature 390 575 [3] Gottesman D 2000 Phys. Rev. A 61 042311 [4] Singh S K and Srikanth R 2005 Phys. Rev. A 71 012328 [5] Long G L and Liu X S 2002 Phys. Rev. A 65 032302 [6] Deng F G and Long G L 2004 Phys. Rev. A 69 052319 [7] Zhang W, Ding D S, Sheng Y B, et al. 2017 Phys. Rev. Lett. 118 220501 [8] Zhou L, Sheng Y B and Long G L 2020 Sci. Bull. 65 12 [9] Bennett C H, DiVincenzo D P, Shor P W, et al. 2001 Phys. Rev. Lett. 87 077902 [10] Pati A K 2000 Phys. Rev. A 63 014302 [11] Berry D W and Sanders B C 2003 Phys. Rev. Lett. 90 057901 [12] Li J F, Liu J M, Feng X L and Oh C H 2016 Quantum Inf. Process. 15 2155 [13] Nguyen B A, Cao T B, Nung V D and Kim J 2011 Adv. Nat. Sci.:Nanosci. Nanotechnol. 2 035009 [14] Nguyen B A 2010 Opt. Commun. 283 4113 [15] Liu H H, Cheng L Y, Shao X Q, et al. 2011 Int. J. Theor. Phys. 50 3023 [16] Zhang C Y, Bai M Q and Zhou S Q 2018 Quantum Inf. Process. 17 146 [17] Gong R and Jiang M 2022 J. Opt. Soc. Am. B 39 3066 [18] Gong R, Wei Y, Xue S and Jiang M 2022 Quantum Inf. Process. 21 341 [19] Huang L and Zhao H X 2017 Int. J. Theor. Phys. 56 678 [20] Chen X B, Ma S Y, Su Y, et al. 2012 Quantum Inf. Process. 11 1653 [21] Kiktenko E O, Popov A A and Fedorov A K 2016 Phys. Rev. A 93 62305 [22] Zhang D, Zha X W, Duan Y J and Wei Z H 2016 Int. J. Theor. Phys. 55 440 [23] Zhang D, Zha X W, Duan Y J and Yang Y Q 2016 Quantum Inf. Process. 15 2169 [24] Chen X B, Sun Y R, Xu G and Jia H Y 2017 Quantum Inf. Process. 16 244 [25] Gu J R and Liu J M 2022 Commun. Theor. Phys. 74 075101 [26] Paris M G A, Cola M and Bonifacio R 2003 J. Opt. B 5 S360 [27] Kurucz Z, Adam P, Kis Z and Janszky J 2005 Phys. Rev. A 72 052315 [28] Rådmark M, Wieśniak M, Żukowski M and Bourennane M 2013 Phys. Rev. A 88 032304 [29] Xiang G Y, Li J, Yu B and Guo G C 2015 Phys. Rev. A 72 012315 [30] Liu W T, Wu W and Ou B Q, et al. 2007 Phys. Rev. A 76 022308 [31] Barreiro J T, Wei T C and Kwiat P G 2010 Phys. Rev. Lett. 105 030407 [32] Wei D X, Luo J and Yang X D 2004 Chin. Phys. 13 817 [33] Nielsen M A and Chuang I L 2000 Quantum Computation and Quantum Information (Cambridge University Press) [34] Guan X W, Chen X B and Wang L C 2014 Int. J. Theor. Phys. 53 2236 [35] Li J F, Liu J M and Xu X Y 2015 Quantum Inf. Process. 14 3465 [36] Wang M M and Qu Z G 2016 Quantum Inf. Process. 15 4805 [37] Wang M M, Qu Z G and Wang W 2017 Quantum Inf. Process. 16 140 [38] Li Y H, Wang Z S and Zhou H Q 2019 Int. J. Theor. Phys. 58 1172 [39] Zhang P, Ma S and Gong L 2019 Int. J. Theor. Phys. 58 2795 [40] Qian Y, Xue S and Jiang M 2020 Phys. Lett. A 384 126204 [41] Dash T, Sk R and Panigrahi P K 2020 Opt. Commun. 464 125518 [42] Xu Z, Wei Y, Jiang C and Jiang M 2022 Chin. Phys. B 31 040304 [43] Huelga S F, Vaccaro J A, Cheflfles A and Plenio M B 2001 Phys. Rev. A 63 042303 [44] Wu L A and Lidar D A 2002 Phys. Rev. A 67 050303 [45] Buscemi F, DAriano G M and Macchiavello C 2005 Phys. Rev. A 71 042327 [46] Rezakhani A T, Siadatnejad S and Ghaderi A H 2005 Phys. Lett. A 336 278 [47] Kang P, Dai H Y, Wei J H and Zhang M 2016 Phys. Rev. A 94 042304 [48] Chen Q Q, Xia Y and Song J 2011 Opt. Commun. 284 5031 [49] Choudhury B S and Dhara A 2015 Quantum Inf. Process. 14 373 [50] Li X H and Ghose S 2015 Quantum Inf. Process. 14 4585 [51] Adepoju A G, Falaye B J and Sun G H 2017 Phys. Lett. A 381 581 [52] Sun Y R, Xu G and Chen X B 2018 IEEE Access 7 2811 [53] Wei J H, Shi L, Zhu Y, et al. 2018 Quantum Inf. Process. 17 70 [54] Sun Y R, Chen X B, Xu G, et al. 2019 Sci. Rep. 9 2081 [55] Sun Y R, Chen Y L Ahmad H and Wei Z H 2019 Computers, Materials and Continua 59 215 [56] Zha X W, Wang M R and Jiang R X 2020 Chin. Phys. B 29 040304 [57] Wang M R, Xiang Z and Ren P 2022 Mod. Phys. Lett. B 36 2250078 [58] Bellomo B, Lo Franco R and Compagno G 2008 Phys. Rev. A 77 032342 [59] Peng J Y and Xiang Y 2021 Opt. Commun. 499 127285 |
No Suggested Reading articles found! |
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
Altmetric
|
blogs
Facebook pages
Wikipedia page
Google+ users
|
Online attention
Altmetric calculates a score based on the online attention an article receives. Each coloured thread in the circle represents a different type of online attention. The number in the centre is the Altmetric score. Social media and mainstream news media are the main sources that calculate the score. Reference managers such as Mendeley are also tracked but do not contribute to the score. Older articles often score higher because they have had more time to get noticed. To account for this, Altmetric has included the context data for other articles of a similar age.
View more on Altmetrics
|
|
|