Please wait a minute...
Chin. Phys. B, 2023, Vol. 32(11): 118502    DOI: 10.1088/1674-1056/acdc8d
INTERDISCIPLINARY PHYSICS AND RELATED AREAS OF SCIENCE AND TECHNOLOGY Prev   Next  

SiC trench MOSFET with dual shield gate and optimized JFET layer for improved dynamic performance and safe operating area capability

Jin-Ping Zhang(张金平)1,2,†, Wei Chen(陈伟)1, Zi-Xun Chen(陈子珣)1, and Bo Zhang(张波)1
1 State Key Laboratory of Electronic Thin Films and Integrated Devices, University of Electronic Science and Technology of China, Chengdu 610054, China;
2 Chongqing Institute of Microelectronics Industry Technology, University of Electronic Science and Technology of China, Chongqing 401331, China
Abstract  A novel silicon carbide (SiC) trench metal-oxide-semiconductor field-effect transistor (MOSFET) with a dual shield gate (DSG) and optimized junction field-effect transistor (JFET) layer (ODSG-TMOS) is proposed. The combination of the DSG and optimized JFET layer not only significantly improves the device's dynamic performance but also greatly enhances the safe operating area (SOA). Numerical analysis is carried out with Silvaco TCAD to study the performance of the proposed structure. Simulation results show that comparing with the conventional asymmetric trench MOSFET (Con-ATMOS), the specific on-resistance (Ron, sp) is significantly reduced at almost the same avalanche breakdown voltage (BVav). Moreover, the DSG structure brings about much smaller reverse transfer capacitance (Crss) and input capacitance (Ciss), which helps to reduce the gate-drain charge (Qgd) and gate charge (Qg). Therefore, the high frequency figure of merit (HFFOM) of Ron, sp· Qgd and Ron, sp· Qg for the proposed ODSG-TMOS are improved by 83.5% and 76.4%, respectively. The switching power loss of the proposed ODSG-TMOS is 77.0% lower than that of the Con-ATMOS. In addition, the SOA of the proposed device is also enhanced. The saturation drain current (Id,sat) at a gate voltage (Vgs) of 15 V for the ODSG-TMOS is reduced by 17.2% owing to the JFET effect provided by the lower shield gate (SG) at a large drain voltage. With the reduced Id,sat, the short-circuit withstand time is improved by 87.5% compared with the Con-ATMOS. The large-current turn-off capability is also improved, which is important for the widely used inductive load applications.
Keywords:  SiC trench MOSFET      switching power loss      figure of merit      safe operating area  
Received:  12 February 2023      Revised:  19 May 2023      Accepted manuscript online:  08 June 2023
PACS:  85.30.De (Semiconductor-device characterization, design, and modeling)  
  73.40.Qv (Metal-insulator-semiconductor structures (including semiconductor-to-insulator))  
  85.30.Tv (Field effect devices)  
  51.50.+v (Electrical properties)  
Fund: Project supported by the China Postdoctoral Science Foundation (Grant No. 2020M682607).
Corresponding Authors:  Jin-Ping Zhang     E-mail:  jinpingzhang@uestc.edu.cn

Cite this article: 

Jin-Ping Zhang(张金平), Wei Chen(陈伟), Zi-Xun Chen(陈子珣), and Bo Zhang(张波) SiC trench MOSFET with dual shield gate and optimized JFET layer for improved dynamic performance and safe operating area capability 2023 Chin. Phys. B 32 118502

[1] Kimoto T 2015 Jpn. J. Appl. Phys. 54 040103
[2] Ryu S H, Krishnaswami S, O'Loughlin M, Richmond J, Agarwal A, Palmour J and Hefner A R 2004 IEEE Electron Dev. Lett. 25 556
[3] Baliga B J 2008 Fundamentals of Power Semiconductor Devices (New York:Springer-Science)
[4] Nakano Y, Nakamura R, Sakairi H, Mitani S and Nakamuraet T 2012 Mater. Sci. Forum 717-720 1069
[5] Nakamura T, Nakano Y, Aketa M, Nakamura R, Mitani S, Sakairi H and Yokotsuji Y 2011 IEDM, December 5-7, 2011, Washington, USA, p. 26.5.1
[6] Peters D, Basler T, Zippelius B, Aichinger T, Bergner W, Esteve R, Kueck D and Siemieniec R 2017 PCIM Europe, May 16-18, 2017, Nuremberg, Germany. p. 1
[7] Siemieniec R, Peters D, Esteve R, Bergner W, Kück D, Aichinger T, Basler T and Zippelius B 2017 EPE'17$ ECCE Europe, September 11-14, 2017, Warsaw, Poland, p. 1
[8] Deng X C, Zhu H, Li X, Tong X, Gao S F, Wen Y, Bai S, Chen W J, Zhou K and Zhang B 2020 IEEE Trans. Power Electron 35 8524
[9] Wu Z, Xia C, Yi B, Cheng J J, Huang H M, Kong M F, Yang H Q and Shi W K 2021 ASICON, October 26-29, 2021, Kunming, China, p. 1
[10] Jiang J, Huang C, Wu T and Zhao F 2019 EDTM, March 12-15, 2019, Singapore, p. 401
[11] Zhang J P, Chen Z X, Tu Y Y, Deng X C and Zhang B 2021 IEEE J. Electron Dev. Soc. 9 713
[12] Zhang J P, Tu Y Y, Luo J Y, Peng Z F, Deng X C and Zhang B 2021 Mater. Sci. Semicond Proc. 134 106026
[13] ATLAS User's Manual:Device Simulation Software, Silvaco Inc., Santa Clara, CA, USA, 2015
[14] Jiang H, Wei J, Dai X, Ke M, Deviny I and Mawby P 2016 IEEE Electron Dev. Lett. 37 1324
[15] Zhang M, Wei J, Jiang H, Chen K J and Cheng C H 2017 IEEE Trans. Dev. Mater. Reliab. 17 432
[16] Wang R D, Li Z X, Qiao M, Zhou X, Wang T Q and Zhang B 2020 IEEE Trans. Nucl. Sci. 67 2009
[17] Wang Z K, Qiao M, Fang D, Wang R D, Qi Z, Li Z and Zhang B 2020 IEEE Electron Dev. Lett. 41 749
[1] NiO/β-Ga2O3 heterojunction diodes with ultra-low leakage current below 10-10 A and high thermostability
Yi Huang(黄义), Wen Yang(杨稳), Qi Wang(王琦), Sheng Gao(高升), Wei-Zhong Chen(陈伟中), Xiao-Sheng Tang(唐孝生), Hong-Sheng Zhang(张红升), and Bin Liu(刘斌). Chin. Phys. B, 2023, 32(9): 098502.
[2] Thermoelectric generators and their applications: Progress, challenges, and future prospects
Nassima Radouane. Chin. Phys. B, 2023, 32(5): 057307.
[3] Thermoelectric signature of Majorana zero modes in a T-typed double-quantum-dot structure
Cong Wang(王聪) and Xiao-Qi Wang(王晓琦). Chin. Phys. B, 2023, 32(3): 037304.
[4] Advances in thermoelectric (GeTe)x(AgSbTe2)100-x
Hongxia Liu(刘虹霞), Xinyue Zhang(张馨月), Wen Li(李文), and Yanzhong Pei(裴艳中). Chin. Phys. B, 2022, 31(4): 047401.
[5] A super-junction SOI-LDMOS with low resistance electron channel
Wei-Zhong Chen(陈伟中), Yuan-Xi Huang(黄元熙), Yao Huang(黄垚), Yi Huang(黄义), and Zheng-Sheng Han(韩郑生). Chin. Phys. B, 2021, 30(5): 057303.
[6] Photonic-plasmonic hybrid microcavities: Physics and applications
Hongyu Zhang(张红钰), Wen Zhao(赵闻), Yaotian Liu(刘耀天), Jiali Chen(陈佳丽), Xinyue Wang(王欣月), and Cuicui Lu(路翠翠). Chin. Phys. B, 2021, 30(11): 117801.
[7] Simulation study of high voltage GaN MISFETs with embedded PN junction
Xin-Xing Fei(费新星), Ying Wang(王颖), Xin Luo(罗昕), Cheng-Hao Yu(于成浩). Chin. Phys. B, 2020, 29(8): 080701.
[8] Electronic and thermoelectric properties of alkali metal-based perovskites CsYbF3 and RbYbF3
Q Mahmood, N A Noor, T Ghrib, Nessrin A Kattan, Asif Mahmood, and Shahid M Ramay. Chin. Phys. B, 2020, 29(11): 117305.
[9] Ultra wide sensing range plasmonic refractive index sensor based on nano-array with rhombus particles
Jiankai Zhu(朱剑凯), Xiangxian Wang(王向贤), Xiaoxiong Wu(吴枭雄), Yingwen Su(苏盈文), Yueqi Xu(徐月奇), Yunping Qi(祁云平), Liping Zhang(张丽萍), and Hua Yang(杨华)$. Chin. Phys. B, 2020, 29(11): 114204.
[10] Physical properties of ternary thallium chalcogenes Tl2MQ3 (M=Zr, Hf; Q=S, Se, Te) via ab-initio calculations
Engin Ateser, Oguzhan Okvuran, Yasemin Oztekin Ciftci, Haci Ozisik, Engin Deligoz. Chin. Phys. B, 2019, 28(10): 106301.
[11] Thermoelectric properties of two-dimensional hexagonal indium-VA
Jing-Yun Bi(毕京云), Li-Hong Han(韩利红), Qian Wang(王倩), Li-Yuan Wu(伍力源), Ruge Quhe(屈贺如歌), Peng-Fei Lu(芦鹏飞). Chin. Phys. B, 2018, 27(2): 026802.
[12] Impact of coupling geometry on thermoelectric properties of oligophenyl-base transistor
S Ramezani Akbarabadi, H Rahimpour Soleimani, M Bagheri Tagani, Z Golsanamlou. Chin. Phys. B, 2017, 26(2): 027303.
[13] Performance analysis of surface plasmon resonance sensor with high-order absentee layer
Qing-Qing Meng(孟庆卿), Xin Zhao(赵鑫), Shu-Jing Chen(陈淑静), Cheng-You Lin(林承友), Ying-Chun Ding(丁迎春), Zhao-Yang Chen(陈朝阳). Chin. Phys. B, 2017, 26(12): 124213.
[14] Thermoelectric properties of Sr0.61Ba0.39Nb2O6 -δ ceramics in different oxygen-reduction conditions
Li Yi (李宜), Liu Jian (刘剑), Wang Chun-Lei (王春雷), Su Wen-Bin (苏文斌), Zhu Yuan-Hu (祝元虎), Li Ji-Chao (李吉超), Mei Liang-Mo (梅良模). Chin. Phys. B, 2015, 24(4): 047201.
[15] Multifunctional disk device for optical switch and temperature sensor
Bian Zhen-Yu (卞振宇), Liang Rui-Sheng (梁瑞生), Zhang Yu-Jing (张郁靖), Yi Li-Xuan (易丽璇), Lai Gen (赖根), Zhao Rui-Tong (赵瑞通). Chin. Phys. B, 2015, 24(10): 107801.
No Suggested Reading articles found!