Please wait a minute...
Chin. Phys. B, 2023, Vol. 32(11): 114211    DOI: 10.1088/1674-1056/acc7ff
ELECTROMAGNETISM, OPTICS, ACOUSTICS, HEAT TRANSFER, CLASSICAL MECHANICS, AND FLUID DYNAMICS Prev   Next  

Direct Kerr-lens mode-locked Tm:LuYO3 ceramic laser

Weijun Ling(令维军)1,2,3,†, Jingwen Xue(薛婧雯)1,2,3, Jinfang Yang(杨金芳)1,2,3, Chong Wang(王翀)1,2,3, Xiaojuan Du(杜晓娟)1,2,3, Wenting Wang(王文婷)1,2,3, Mingxia Zhang(张明霞)1,2,3, Feiping Lu(路飞平)1,2,3, Xiangbing Li(李向兵)1,2,3, and Zhong Dong(董忠)1,2,3
1 Gansu All Solid-State Laser Engineering Research Center, Tianshui 741001, China;
2 Engineering Research Center of Integrated Circuit Packaging and Testing, Ministry of Education, Tianshui 741001, China;
3 School of Electronic Information and Electrical Engineering, Tianshui Normal University, Tianshui 741001, China
Abstract  A direct Kerr-lens mode-locked Tm:LuYO3 ceramic laser without the aid of any mode-locked starting element is reported for the first time. A pulse duration as short as 259 fs and a maximum average output power of 326 mW are obtained at a repetition rate of 97.1 MHz. The corresponding optical spectrum centered at 2053 nm exhibits a bandwidth of 19.8 nm, which indicates the presence of nearly Fourier transform-limited pulses. Such a Kerr-lens mode-locked Tm:LuYO3 ceramic laser is a promising ultrashort pulse source, with both the excellent laser characteristics of Tm:LuYO3 and the high-power 790 nm laser diode pumping scheme.
Keywords:  all solid-state laser      ultrashort pulse      Kerr-lens mode-locked      Tm:LuYO3 ceramic  
Received:  06 January 2023      Revised:  23 March 2023      Accepted manuscript online:  28 March 2023
PACS:  42.55.Rz (Doped-insulator lasers and other solid state lasers)  
  42.65.Re (Ultrafast processes; optical pulse generation and pulse compression)  
Fund: Project supported by the National Natural Science Foundation of China (Grant Nos. 62165012 and 61665010), Key research and development projects in Gansu Province (Grant No. 21YFIGE300), Gansu Province College Industry Support Plan Project (Grant Nos. 2020C-23 and 2022CYZC-59), Department of Education of Gansu Province: The Education Project of Open Competition for the Best Candidates (Grant No. 2021jyjbgs-06), Gansu Provincial University Innovation Fund Project (Grant No. 2021B-190), Qinzhou District Science and Technology Plan Project (Grant No. 2021-SHFZG- 1442), Gansu Province College Young Doctor Support Project (Grant No. 2023QB-013), and Gansu Province Excellent Graduate Innovation Star Project (Grant No. 2022CXZX- 796).
Corresponding Authors:  Weijun Ling     E-mail:  wjlingts@sina.com

Cite this article: 

Weijun Ling(令维军), Jingwen Xue(薛婧雯), Jinfang Yang(杨金芳) Chong Wang(王翀), Xiaojuan Du(杜晓娟), Wenting Wang(王文婷), Mingxia Zhang(张明霞), Feiping Lu(路飞平), Xiangbing Li(李向兵), and Zhong Dong(董忠) Direct Kerr-lens mode-locked Tm:LuYO3 ceramic laser 2023 Chin. Phys. B 32 114211

[1] Mingareev I, Weirauch F, Olowinsky A, Shah L, Kadwani P and Richardson M 2012 Optics Laser Technology 44 2095
[2] Kaufmann R and Hibst R 1996 Lasers in Surgery and Medicine 19 324
[3] Sorokin E, Sorokina I T, Mandon J, Guelachvili G and Picqué N 2007 Opt. Express 15 16540
[4] Duan X M, Chen C, Ding Y, Yao B Q and Wang Y Z 2018 Chin. Phys. Lett. 35 054205
[5] Liu H Q, Zhen G, Wang S Y, Lin L, Guo L C, Li B B and Cai D F 2011 Acta Phys. Sin. 60 014212 (in Chinese)
[6] Ma J, Xie G, Lv P, Gao W, Yuan P, Qian L, Yu H, Zhang H, Wang J and Tang D 2012 Opt. Lett. 37 2085
[7] Sun R, Chen C, Ling W J, Zhang Y N, Kang C P and Xu Q 2019 Acta Phys. Sin. 68 104207 (in Chinese)
[8] Wang J, Liang X, Hu G, Zheng Z, Lin S, Ouyang D, Wu X, Yan P, Ruan S and Sun Z 2016 Scientific Reports 6 28885
[9] Ling W J, Xia T, Dong Z, Zuo Y Y, Li K, Liu Q, Lu F P, Zhao X L and Wang Y G 2018 Acta Phys. Sin. 67 014201 (in Chinese)
[10] Li X, Qian J and Ai F 2018 Laser Physics 28 045003
[11] Na Q, Huang Z, He M, Chen Z, Xu T, Wang L, Yan P, Li Y, Luo S and Xu C 2019 Opt. Express 27 35230
[12] Gopinath J, Thoen E, Koontz E, Grein M, Kolodziejski L and Ippen E 2001 Appl. Phys. Lett. 78 3409
[13] Dawlaty J, Shivaraman S and Chandrashekhar M 2008 Appl. Phys. Lett. 92 042116
[14] Feng T, Yang K, Zhao J, Zhao S, Qiao W, Li T, Dekorsy T, He J, Zheng L and Wang Q 2015 Opt. Express 23 11819
[15] Sun R, Chen C, Ling W J, Zhang Y N, Kang C P and Xu Q 2019 Acta Phys. Sin. 68 104207 (in Chinese)
[16] Ma J, Huang H, Ning K, Xu X, Xie G, Qian L, Loh K P and Tang D 2016 Opt. Lett 41 890
[17] Ling W, Xia T, Sun R, Chen C and Xu Q 2019 Frontiers in Physics 7 216
[18] Wang Y, Zhao Y, Pan Z, Bae J E, Choi S Y, Rotermund F, Loiko P, Serres J M, Mateos X and Yu H 2018 Opt. Lett. 43 4268
[19] Li L J, Li T X, Zhou L, Fan J Y, Yang Y Q, Xie W Q and Li S S 2019 Chin. Phys. B 28 094205
[20] Senatsky Y, Shirakawa A, Sato Y, Hagiwara J, Lu J, Ueda K, Yagi H and Yanagitani T 2004 Laser Phys. Lett. 1 500
[21] Tokurakawa M, Shirakawa A, Ueda K, Yagi H, Noriyuki M, Yanagitani T and Kaminskii A A 2009 Opt. Express 17 3353
[22] Ryabochkina P A E, Chabushkin A N, Kopylov Y L, Balashov V V and Lopukhin K 2016 Quantum Electronics 46 597
[23] Wang H, Huang H, Wang S and Shen D 2018 Optical Engineering 57 026109
[24] Xu X, Hu Z, Li D, Liu P, Zhang J, Xu B and Xu J 2017 Opt. Express 25 15322
[25] Stevenson N K, Brown C T A, Hopkins J M, Dawson M D and Lagatsky A A 2019 Opt. Express 27 11103
[26] Zhou Z, Guan X, Huang X, Xu B, Xu H, Cai Z, Xu X, Liu P, Li D and Zhang J 2017 Opt. Lett. 42 3781
[27] Li D, Kong L, Xu X, Liu P, Xie G, Zhang J and Xu J 2019 Opt. Express 27 24416
[28] Zhao Y, Wang L, Wang Y, Zhang J, Liu P, Xu X, Liu Y, Shen D, Bae J E and Park T G 2020 Opt. Lett 45 459
[29] Liu H, Wang G Y, Yang K, Kang R and Wei Z 2019 Chin. Phys. B 28 094213
[30] Canbaz F, Yorulmaz I and Sennaroglu A 2017 Opt. Lett 42 3964
[31] Sorokina I T and Sorokin E 2014 Quantum Electronics 21 273
[32] Tokurakawa M, Fujita E and Kränkel C 2017 Opt. Lett 42 3185
[33] Haus H A and Fujimoto J G 1992 IEEE Journal of Quantum Electronics 28 2086
[34] Huang D, Ulman M and Acioli L 1992 Opt. Lett 17 511
[35] Senatsky Y, Shirakawa A and Sato Y 2004 Laser Physics Letters 1 500
[36] Wang L, Chen W and Zhao Y 2020 Opt. Lett 45 6142
[37] Ling W J, Zheng J A, Jia Y L and Wei Z Y 2005 Acta Phys. Sin. 54 1619 (in Chinese)
[1] Diode-pumped Kerr-lens mode-locked Ti: sapphire laser with broad wavelength tunability
Han Liu(刘寒), Geyang Wang(王阁阳), Ke Yang(杨科), Renzhu Kang(康仁铸), Wenlong Tian(田文龙), Dacheng Zhang(张大成), Jiangfeng Zhu(朱江峰), Hainian Han(韩海年), Zhiyi Wei(魏志义). Chin. Phys. B, 2019, 28(9): 094213.
[2] Two-electron quantum ring in short pulses
Poonam Silotia, Rakesh Kumar Meena, Vinod Prasad. Chin. Phys. B, 2015, 24(2): 020303.
[3] Backward Raman amplification in plasmas with chirped wideband pump and seed pulses
Wu Zhao-Hui (吴朝辉), Wei Xiao-Feng (魏晓峰), Zuo Yan-Lei (左言磊), Liu Lan-Qin (刘兰琴), Zhang Zhi-Meng (张智猛), Li Min (李敏), Zhou Yu-Liang (周煜梁), Su Jing-Qin (粟敬钦). Chin. Phys. B, 2015, 24(1): 014211.
[4] Shaping of few-cycle laser pulses via a subwavelength structure
Guo Liang (郭亮), Xie Xiao-Tao (谢小涛), Zhan Zhi-Ming (詹志明). Chin. Phys. B, 2013, 22(9): 094212.
[5] Properties of periodic multicrystal configurations in walk-off-compensating second harmonic generation of ultrashort pulses
Huang Jin-Zhe(黄金哲), Zhang Liu-Yang(张留洋), and Shen Tao(沈涛) . Chin. Phys. B, 2011, 20(4): 044206.
[6] Describing spatiotemporal couplings in ultrashort pulses using coupling coefficients
Zeng Shu-Guang(曾曙光), Dan You-Quan(但有全), Zhang Bin(张彬), Sun Nian-Chun(孙年春) , and Sui Zhan(隋展) . Chin. Phys. B, 2011, 20(11): 114213.
[7] Tight focusing of femtosecond elliptically polarised vortex light pulses
Hua Li-Min(华黎闽),Chen Bao-Suan(陈宝算),Chen Zi-Yang(陈子阳),and Pu Ji-Xiong(蒲继雄) . Chin. Phys. B, 2011, 20(1): 014202.
[8] Relative carrier-envelope phase dependence of resonant propagation of two-colour femtosecond pulses in V-type atomic medium
Tan Xia(谭霞), Wang Zhen-Dong(王振东), Wang Lei(王蕾), and Fan Xi-Jun(樊锡君). Chin. Phys. B, 2010, 19(6): 064211.
[9] Intense Cherenkov-type terahertz electromagnetic radiation from ultrafast laser--plasma interaction
Hu Qiang-Lin(胡强林), Liu Shi-Bing(刘世炳), and Li Wei(李维) . Chin. Phys. B, 2008, 17(3): 1050-1054.
[10] Diffraction of an ultrashort pulsed beam with arbitrary polarization state from a volume holographic grating in LiNbO3 crystals
Wang Chun-Hua(王春花), Liu Li-Ren(刘立人), Yan Ai-Min(闫爱民), Zhou Yu(周煜), Liu De-An(刘德安), and Hu Zhi-Juan(胡志娟). Chin. Phys. B, 2007, 16(1): 100-105.
[11] Influence of spatiotemporal coupling on the capture-and-acceleration-scenario vacuum electron acceleration by ultrashort pulsed laser beam
Lu Da-Quan(陆大全), Qian Lie-Jia(钱列加), Li Yong-Zhong(李永忠), and Fan Dian-Yuan(范滇元). Chin. Phys. B, 2007, 16(1): 88-94.
[12] (3+1)-dimensional nonlinear propagation equation for ultrashort pulsed beam in left-handed material
Hu Yong-Hua(胡勇华), Fu Xi-Quan(傅喜泉), Wen Shuang-Chun(文双春), Su Wen-Hua(苏文华), and Fan Dian-Yuan(范滇元). Chin. Phys. B, 2006, 15(12): 2970-2976.
[13] Resonator insensitive investigation to thermal lens for end-pumped lasers
Gong Chuan-Bo (龚传波), Chen Chang-Shui (陈长水), Song Qiu-Ming (宋秋鸣), Zhu Ling (朱灵). Chin. Phys. B, 2004, 13(8): 1263-1268.
[14] Propagation of ultrashort pulsed beams in dispersive media
Liu Zhi-Jun (刘志军), Lü Bai-Da (吕百达). Chin. Phys. B, 2003, 12(8): 879-885.
[15] Modulation instability of femtosecond pulses in fibres with slowly decreasing dispersion
Xu Wen-Cheng (徐文成), Zhang Shu-Min (张书敏), Chen Wei-Cheng (陈伟成), Luo Ai-Ping (罗爱平), Guo Qi (郭旗), Liu Song-Hao (刘颂豪). Chin. Phys. B, 2002, 11(1): 39-43.
No Suggested Reading articles found!