ELECTROMAGNETISM, OPTICS, ACOUSTICS, HEAT TRANSFER, CLASSICAL MECHANICS, AND FLUID DYNAMICS |
Prev
Next
|
|
|
Direct Kerr-lens mode-locked Tm:LuYO3 ceramic laser |
Weijun Ling(令维军)1,2,3,†, Jingwen Xue(薛婧雯)1,2,3, Jinfang Yang(杨金芳)1,2,3, Chong Wang(王翀)1,2,3, Xiaojuan Du(杜晓娟)1,2,3, Wenting Wang(王文婷)1,2,3, Mingxia Zhang(张明霞)1,2,3, Feiping Lu(路飞平)1,2,3, Xiangbing Li(李向兵)1,2,3, and Zhong Dong(董忠)1,2,3 |
1 Gansu All Solid-State Laser Engineering Research Center, Tianshui 741001, China; 2 Engineering Research Center of Integrated Circuit Packaging and Testing, Ministry of Education, Tianshui 741001, China; 3 School of Electronic Information and Electrical Engineering, Tianshui Normal University, Tianshui 741001, China |
|
|
Abstract A direct Kerr-lens mode-locked Tm:LuYO3 ceramic laser without the aid of any mode-locked starting element is reported for the first time. A pulse duration as short as 259 fs and a maximum average output power of 326 mW are obtained at a repetition rate of 97.1 MHz. The corresponding optical spectrum centered at 2053 nm exhibits a bandwidth of 19.8 nm, which indicates the presence of nearly Fourier transform-limited pulses. Such a Kerr-lens mode-locked Tm:LuYO3 ceramic laser is a promising ultrashort pulse source, with both the excellent laser characteristics of Tm:LuYO3 and the high-power 790 nm laser diode pumping scheme.
|
Received: 06 January 2023
Revised: 23 March 2023
Accepted manuscript online: 28 March 2023
|
PACS:
|
42.55.Rz
|
(Doped-insulator lasers and other solid state lasers)
|
|
42.65.Re
|
(Ultrafast processes; optical pulse generation and pulse compression)
|
|
Fund: Project supported by the National Natural Science Foundation of China (Grant Nos. 62165012 and 61665010), Key research and development projects in Gansu Province (Grant No. 21YFIGE300), Gansu Province College Industry Support Plan Project (Grant Nos. 2020C-23 and 2022CYZC-59), Department of Education of Gansu Province: The Education Project of Open Competition for the Best Candidates (Grant No. 2021jyjbgs-06), Gansu Provincial University Innovation Fund Project (Grant No. 2021B-190), Qinzhou District Science and Technology Plan Project (Grant No. 2021-SHFZG- 1442), Gansu Province College Young Doctor Support Project (Grant No. 2023QB-013), and Gansu Province Excellent Graduate Innovation Star Project (Grant No. 2022CXZX- 796). |
Corresponding Authors:
Weijun Ling
E-mail: wjlingts@sina.com
|
Cite this article:
Weijun Ling(令维军), Jingwen Xue(薛婧雯), Jinfang Yang(杨金芳) Chong Wang(王翀), Xiaojuan Du(杜晓娟), Wenting Wang(王文婷), Mingxia Zhang(张明霞), Feiping Lu(路飞平), Xiangbing Li(李向兵), and Zhong Dong(董忠) Direct Kerr-lens mode-locked Tm:LuYO3 ceramic laser 2023 Chin. Phys. B 32 114211
|
[1] Mingareev I, Weirauch F, Olowinsky A, Shah L, Kadwani P and Richardson M 2012 Optics Laser Technology 44 2095 [2] Kaufmann R and Hibst R 1996 Lasers in Surgery and Medicine 19 324 [3] Sorokin E, Sorokina I T, Mandon J, Guelachvili G and Picqué N 2007 Opt. Express 15 16540 [4] Duan X M, Chen C, Ding Y, Yao B Q and Wang Y Z 2018 Chin. Phys. Lett. 35 054205 [5] Liu H Q, Zhen G, Wang S Y, Lin L, Guo L C, Li B B and Cai D F 2011 Acta Phys. Sin. 60 014212 (in Chinese) [6] Ma J, Xie G, Lv P, Gao W, Yuan P, Qian L, Yu H, Zhang H, Wang J and Tang D 2012 Opt. Lett. 37 2085 [7] Sun R, Chen C, Ling W J, Zhang Y N, Kang C P and Xu Q 2019 Acta Phys. Sin. 68 104207 (in Chinese) [8] Wang J, Liang X, Hu G, Zheng Z, Lin S, Ouyang D, Wu X, Yan P, Ruan S and Sun Z 2016 Scientific Reports 6 28885 [9] Ling W J, Xia T, Dong Z, Zuo Y Y, Li K, Liu Q, Lu F P, Zhao X L and Wang Y G 2018 Acta Phys. Sin. 67 014201 (in Chinese) [10] Li X, Qian J and Ai F 2018 Laser Physics 28 045003 [11] Na Q, Huang Z, He M, Chen Z, Xu T, Wang L, Yan P, Li Y, Luo S and Xu C 2019 Opt. Express 27 35230 [12] Gopinath J, Thoen E, Koontz E, Grein M, Kolodziejski L and Ippen E 2001 Appl. Phys. Lett. 78 3409 [13] Dawlaty J, Shivaraman S and Chandrashekhar M 2008 Appl. Phys. Lett. 92 042116 [14] Feng T, Yang K, Zhao J, Zhao S, Qiao W, Li T, Dekorsy T, He J, Zheng L and Wang Q 2015 Opt. Express 23 11819 [15] Sun R, Chen C, Ling W J, Zhang Y N, Kang C P and Xu Q 2019 Acta Phys. Sin. 68 104207 (in Chinese) [16] Ma J, Huang H, Ning K, Xu X, Xie G, Qian L, Loh K P and Tang D 2016 Opt. Lett 41 890 [17] Ling W, Xia T, Sun R, Chen C and Xu Q 2019 Frontiers in Physics 7 216 [18] Wang Y, Zhao Y, Pan Z, Bae J E, Choi S Y, Rotermund F, Loiko P, Serres J M, Mateos X and Yu H 2018 Opt. Lett. 43 4268 [19] Li L J, Li T X, Zhou L, Fan J Y, Yang Y Q, Xie W Q and Li S S 2019 Chin. Phys. B 28 094205 [20] Senatsky Y, Shirakawa A, Sato Y, Hagiwara J, Lu J, Ueda K, Yagi H and Yanagitani T 2004 Laser Phys. Lett. 1 500 [21] Tokurakawa M, Shirakawa A, Ueda K, Yagi H, Noriyuki M, Yanagitani T and Kaminskii A A 2009 Opt. Express 17 3353 [22] Ryabochkina P A E, Chabushkin A N, Kopylov Y L, Balashov V V and Lopukhin K 2016 Quantum Electronics 46 597 [23] Wang H, Huang H, Wang S and Shen D 2018 Optical Engineering 57 026109 [24] Xu X, Hu Z, Li D, Liu P, Zhang J, Xu B and Xu J 2017 Opt. Express 25 15322 [25] Stevenson N K, Brown C T A, Hopkins J M, Dawson M D and Lagatsky A A 2019 Opt. Express 27 11103 [26] Zhou Z, Guan X, Huang X, Xu B, Xu H, Cai Z, Xu X, Liu P, Li D and Zhang J 2017 Opt. Lett. 42 3781 [27] Li D, Kong L, Xu X, Liu P, Xie G, Zhang J and Xu J 2019 Opt. Express 27 24416 [28] Zhao Y, Wang L, Wang Y, Zhang J, Liu P, Xu X, Liu Y, Shen D, Bae J E and Park T G 2020 Opt. Lett 45 459 [29] Liu H, Wang G Y, Yang K, Kang R and Wei Z 2019 Chin. Phys. B 28 094213 [30] Canbaz F, Yorulmaz I and Sennaroglu A 2017 Opt. Lett 42 3964 [31] Sorokina I T and Sorokin E 2014 Quantum Electronics 21 273 [32] Tokurakawa M, Fujita E and Kränkel C 2017 Opt. Lett 42 3185 [33] Haus H A and Fujimoto J G 1992 IEEE Journal of Quantum Electronics 28 2086 [34] Huang D, Ulman M and Acioli L 1992 Opt. Lett 17 511 [35] Senatsky Y, Shirakawa A and Sato Y 2004 Laser Physics Letters 1 500 [36] Wang L, Chen W and Zhao Y 2020 Opt. Lett 45 6142 [37] Ling W J, Zheng J A, Jia Y L and Wei Z Y 2005 Acta Phys. Sin. 54 1619 (in Chinese) |
No Suggested Reading articles found! |
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
Altmetric
|
blogs
Facebook pages
Wikipedia page
Google+ users
|
Online attention
Altmetric calculates a score based on the online attention an article receives. Each coloured thread in the circle represents a different type of online attention. The number in the centre is the Altmetric score. Social media and mainstream news media are the main sources that calculate the score. Reference managers such as Mendeley are also tracked but do not contribute to the score. Older articles often score higher because they have had more time to get noticed. To account for this, Altmetric has included the context data for other articles of a similar age.
View more on Altmetrics
|
|
|