Please wait a minute...
Chin. Phys. B, 2023, Vol. 32(11): 117701    DOI: 10.1088/1674-1056/acbf25
CONDENSED MATTER: ELECTRONIC STRUCTURE, ELECTRICAL, MAGNETIC, AND OPTICAL PROPERTIES Prev   Next  

Facile integration of an Al-rich Al1-xInxN photodetector on free-standing GaN by radio-frequency magnetron sputtering

Xinke Liu(刘新科)1, Zhichen Lin(林之晨)1, Yuheng Lin(林钰恒)1, Jianjin Chen(陈建金)2, Ping Zou(邹苹)1, Jie Zhou(周杰)1, Bo Li(李博)1, Longhai Shen(沈龙海)2, Deliang Zhu(朱德亮)1, Qiang Liu(刘强)3, Wenjie Yu(俞文杰)3, Xiaohua Li(黎晓华)1, Hong Gu(顾泓)4, Xinzhong Wang(王新中)5, and Shuangwu Huang(黄双武)1,†
1 College of Materials Science and Engineering, Institute of Microelectronics(IME), Guangdong Research Center for Interfacial Engineering of Functional Materials, Shenzhen University, Shenzhen 518060, China;
2 School of Science, Shenyang Ligong University, Shenyang 110159, China;
3 State Key Laboratory of Functional Materials for Informatics, Shanghai Institute of Microsystem and Information Technology, Chinese Academy of Sciences, Shanghai 200050, China;
4 Gusu Laboratory of Materials Science, Suzhou 215123, China;
5 Information Technology Research Institute, Shenzhen Institute of Information Technology, Shenzhen 518172, China
Abstract  Al1-xInxN, a III-nitride semiconductor material, is currently of great research interest due to its remarkable physical properties and chemical stability. When the Al and In compositions are tuned, its band-gap energy varies from 0.7 eV to 6.2 eV, which shows great potential for application in photodetectors. Here, we report the fabrication and performance evaluation of integrated Al1-xInxN on a free-standing GaN substrate through direct radio-frequency magnetron sputtering. The optical properties of Al1-xInxN will be enhanced by the polarization effect of a heterostructure composed of Al1-xInxN and other III-nitride materials. An Al1-xInxN/GaN visible-light photodetector was prepared by semiconductor fabrication technologies such as lithography and metal deposition. The highest photoresponsivity achieved was 1.52 A·W-1 under 365 nm wavelength illumination and the photodetector was determined to have the composition Al0.75In0.25N/GaN. A rise time of 0.55 s was observed after transient analysis of the device. The prepared Al1-xInxN visible-light photodetector had a low dark current, high photoresponsivity and fast response speed. By promoting a low-cost, simple fabrication method, this study expands the application of ternary alloy Al1-xInxN visible-light photodetectors in optical communication.
Keywords:  Al1-xInxN      photodetector      GaN      radio-frequency magnetron sputtering      ternary alloy  
Received:  26 November 2022      Revised:  03 February 2023      Accepted manuscript online:  27 February 2023
PACS:  77.84.Bw (Elements, oxides, nitrides, borides, carbides, chalcogenides, etc.)  
  07.57.Kp (Bolometers; infrared, submillimeter wave, microwave, and radiowave receivers and detectors)  
  71.55.Eq (III-V semiconductors)  
  81.15.Cd (Deposition by sputtering)  
Fund: Project supported by the National Natural Science Foundation of China (Grant Nos. 61974144, 62004127, and 12074263), Key-Area Research and Development Program of Guangdong Province (Grant Nos. 2020B010174003 and 2020B010169001), Guangdong Science Foundation for Distinguished Young Scholars (Grant No. 2022B1515020073), the Science and Technology Foundation of Shenzhen (Grant No. JSGG20191129114216474), and the Open Project of State Key Laboratory of Functional Materials for Informatics.
Corresponding Authors:  Shuangwu Huang     E-mail:  mark_huang@szu.edu.cn

Cite this article: 

Xinke Liu(刘新科), Zhichen Lin(林之晨), Yuheng Lin(林钰恒), Jianjin Chen(陈建金), Ping Zou(邹苹), Jie Zhou(周杰), Bo Li(李博), Longhai Shen(沈龙海), Deliang Zhu(朱德亮), Qiang Liu(刘强), Wenjie Yu(俞文杰), Xiaohua Li(黎晓华), Hong Gu(顾泓), Xinzhong Wang(王新中), and Shuangwu Huang(黄双武) Facile integration of an Al-rich Al1-xInxN photodetector on free-standing GaN by radio-frequency magnetron sputtering 2023 Chin. Phys. B 32 117701

[1] Zawadzka A M, Karakas A, Plóciennik P and Szatkowski J, Lukasiak Z, Kapceoglu A, Ceylan Y and Sahraoui B 2015 Dyes and Pigments 112 116
[2] Yamaguchi S, Kariya M, Nitta S, Kato H, Takeuchi T, Wetzel C, Amano H and Akasaki I 1998 Journal of Crystal Growth 195 309
[3] Lobanova A V, Segal A S, Yakovlev E V and Talalaev R A 2012 Journal of Crystal Growth 352 199
[4] Wang F, Li S F, Sun Q and Jia Y 2010 Solid State Sciences 12 1641
[5] Blasco R, Naranjo F B and Valdueza-Felip S 2020 Current Applied Physics 20 1244
[6] Blasco R, Valdueza-Felip S, Montero D, Sun M, Olea J and Naranjo F B 2020 Physica Status Solidi (b) 257 1900575
[7] Chen J J, Shen L S, Qi D L, Wu L J, Li X, Song J Y and Zhang X L 2022 Ceramics International 48 2802
[8] Carlin J F and Ilegems M 2003 Appl. Phys. Lett. 83 668
[9] Borovac D, Sun W C, Song R, Wierer J J and Tansu N 2020 Journal of Crystal Growth 533 125469
[10] Tan C K, Sun W, Borovac D and Tansu N 2016 Sci. Rep. 6 22983
[11] Velpula R T, Jain B, Philip M R, Nguyen H D, Wang R and Nguyen H P T 2020 Sci. Rep. 10 2547
[12] Laskar M R, Ganguli T, Rahman A A, Arora A, Hatui N, Gokhale M R, Ghosh S and Bhattacharya A 2011 Appl. Phys. Lett. 98 181108
[13] Lupu A, Julien F H, Golka S, Pozzovivo G, Strasser G, Baumann E, Giorgetta F, Hofstetter D, Nicolay S, Mosca M, Feltin E, Carlin J F and Grandjean N 2008 IEEE Photonics Technology Letters 20 102
[14] Edmunds C, Tang L, Li D, Cervantes M, Gardner G, Paskova T, Manfra M J and Malis O 2012 Journal of Electronic Materials 41 881
[15] Jeganathan K, Shimizu M, Okumura H, Yano Y and Akutsu N 2007 Journal of Crystal Growth 304 342
[16] Liu H F, Tan C C, Dalapati G K and Chi D Z 2012 J. Appl. Phys. 112 063114
[17] Cascajero A N, Lerma L M, Felip S V, Navío C, Monroy E, Herráez G M and Naranjo F B 2016 Jpn. J. Appl. Phys. 55 065101
[18] Dong C J, Xu M, Chen Q Y, Liu F S, Zhou H P, Wei Y and Ji H X 2009 J. Alloys Compd. 479 812
[19] Cascajero A N, Felip S V, Lerma L M, Monroy E, Shaw E T, Martin R W, Herráez M G and Naranjo F B 2017 J. Phys. D:Appl. Phys. 50 065101
[20] Lebedev V, Morales F M, Cimalla V, Lozano J G, González D, Himmerlich M, Krischok S, Schaefer J A and Ambacher O 2006 Superlattices and Microstructures 40 289
[21] You Y, Ito A, Tu R and Goto T 2013 Surface and Coatings Technology 232 1
[22] Alizadeh M, Goh B T, Pandey A K, Dee C F and Rahman S A 2017 Materials Chemistry and Physics 199 408
[23] Alizadeh M, Ganesh V, Mehdipour H, Nazarudin N F F, Goh B T, Shuhaimi A and Rahman S A 2015 J. Alloys Compd. 632 741
[24] Alizadeh M, Mehdipour H, Ganesh V, Ameera A N, Goh B T, Shuhaimi A and Rahman S A 2014 Appl. Phys. A 117 2217
[25] Abed C, Fernandez S, Aouida S, Elhouichet H, Priego F, Castro Y, Mancebo M B G and Munuera C 2020 Materials (Basel) 13 9
[26] Huang Y, Chen D J, Lu H, Shi H B, Han P, Zhang R and Zheng Y D 2010 Appl. Phys. Lett. 96 243503
[27] Heikman S, Keller S, Wu Y, Speck J S, DenBaars S P and Mishra U K 2003 J. Appl. Phys. 93 10114
[28] Edmunds C, Tang L, Cervantes M, Shirazi-Hd M, Shao J, Grier A, Valavanis A, Cooper J D, Li D, Gardner G, Zakharov D N, Ikonić Z, Indjin D, Harrison P, Manfra M J and Malis O 2013 Phys. Rev. B 88 235306
[29] Li Z W, Wu J, Wang C, Zhang H, Yu W J, Lu Y M and Xinke Liu 2020 Nanophotonics 9 1981
[30] Cramer R C, Kyle E C H and Speck J S 2019 J. Appl. Phys. 126 035703
[31] Yeh T S, Wu J H and Lan W H 2008 Journal of Crystal Growth 310 5308
[32] Liu X K, He J Z, Liu Q, Tang D, Jia F, Wen J, Lu T MM, Yu W J, Zhu D L, Liu W J, Cao P J, Han S, Pan J S, He Z B and Ang K W 2015 Appl. Phys. Lett. 107 101601
[33] Li K L, Li Z W, Hong Y H, Hu C, Mao W and Liu X K 2018 Appl. Phys. Lett. 113 143506
[34] Liu X K, Hu C, Li K, Wang W, Li Z W, Ao J, Wu J, He W, Mao W, Liu Q, Yu W and Chung R J 2018 Nanoscale Res. Lett. 13 405
[35] Liu X K, Luo J L, Zhu D L, Lu Y M, Li X L, He J L, Chiu H C, Xu K, Yu W J and Chung R J 2021 ACS Applied Electronic Materials 3 1988
[36] Lähnemann J, Hertog M D, Hille P, Mata M D L, Fournier T, Schörmann J, Arbiol J, Eickhoff M and Monroy E 2016 Nano Lett. 16 3260
[37] Xiao Y F, Min L, Liu X K, Liu W J, Younis U, Peng T H, Kang X W, Wu X H, Shijin Ding and Zhang D W 2020 Nanophotonics 9 3035
[38] Hu S Q, Liao Z L, He J L, Yu W J, Song L J, Wang Q, Li X H and Liu X K 2021 J. Appl. Phys. 129 183106
[39] Weng W Y, Chang S J, Lai W C, Hsueh T J, Shei S C, Zeng X F, Wu S L and Hung S C 2009 IEEE Photonics Technology Letters 21 504
[40] Wu Y C, Liu C H, Chen S Y, Shih F Y, Ho P H, Chen C W, Liang C T and Wang W H 2015 Sci. Rep. 5 11472
[41] Blasco R, Cascajero A N, Rodríguez M J, Montero D, Grenet L, Olea J, Naranjo F B and Felip S V 2018 Physica Status Solidi (a) 216 1800494
[42] Kaushik S, Naik T R, Alka A, Garg M, Tak B R, Ravikanth M, Rao V R and Singh R 2020 ACS Applied Electronic Materials 2 739
[43] Afzal N, Devarajan M and Ibrahim K 2016 Materials Research Express 3 085904
[44] Jain S K, Krishna S, Aggarwal N, Kumar R, Gundimeda A, Husale S C, Gupta V and Gupta G 2018 Journal of Electronic Materials 47 6086
[1] Photophysics of metal-organic frameworks: A brief overview
Qingshuo Liu(刘晴硕), Junhong Yu(余俊宏), and Jianbo Hu(胡建波). Chin. Phys. B, 2024, 33(1): 017204.
[2] Effects of Mg-doping temperature on the structural and electrical properties of nonpolar a-plane p-type GaN films
Kai Chen(陈凯), Jianguo Zhao(赵见国), Yu Ding(丁宇), Wenxiao Hu(胡文晓), Bin Liu(刘斌), Tao Tao(陶涛), Zhe Zhuang(庄喆), Yu Yan(严羽), Zili Xie(谢自力), Jianhua Chang(常建华), Rong Zhang(张荣), and Youdou Zheng(郑有炓). Chin. Phys. B, 2024, 33(1): 016801.
[3] Magnetic and electronic properties of La-doped hexagonal 4H-SrMnO3
Jie Li(李杰), Yinan Chen(陈一楠), Nuo Gong(宫诺), Xin Huang(黄欣), Zhihong Yang(杨志红), and Yakui Weng(翁亚奎). Chin. Phys. B, 2024, 33(1): 017502.
[4] High responsivity photodetectors based on graphene/WSe2 heterostructure by photogating effect
Shuping Li(李淑萍), Ting Lei(雷挺), Zhongxing Yan(严仲兴), Yan Wang(王燕), Like Zhang(张黎可), Huayao Tu(涂华垚), Wenhua Shi(时文华), and Zhongming Zeng(曾中明). Chin. Phys. B, 2024, 33(1): 018501.
[5] Ultra-high photoresponsive photodetector based on ReS2/SnS2 heterostructure
Binghui Wang(王冰辉), Yanhui Xing(邢艳辉), Shengyuan Dong(董晟园), Jiahao Li(李嘉豪), Jun Han(韩军), Huayao Tu(涂华垚), Ting Lei(雷挺), Wenxin He(贺雯馨), Baoshun Zhang(张宝顺), and Zhongming Zeng(曾中明). Chin. Phys. B, 2023, 32(9): 098504.
[6] High performance solar-blind deep ultraviolet photodetectors via β-phase (In0.09Ga0.91)2O3 single crystalline film
Bicheng Wang(王必成), Ziying Tang(汤梓荧), Huying Zheng(郑湖颖), Lisheng Wang(王立胜), Yaqi Wang(王亚琪), Runchen Wang(王润晨), Zhiren Qiu(丘志仁), and Hai Zhu(朱海). Chin. Phys. B, 2023, 32(9): 098508.
[7] Novel double channel reverse conducting GaN HEMT with an integrated MOS-channel diode
Xintong Xie(谢欣桐), Cheng Zhang(张成), Zhijia Zhao(赵智家), Jie Wei(魏杰),Xiaorong Luo(罗小蓉), and Bo Zhang(张波). Chin. Phys. B, 2023, 32(9): 098506.
[8] Proton irradiation-induced dynamic characteristics on high performance GaN/AlGaN/GaN Schottky barrier diodes
Tao Zhang(张涛), Ruo-Han Li(李若晗), Kai Su(苏凯), Hua-Ke Su(苏华科), Yue-Guang Lv(吕跃广), Sheng-Rui Xu(许晟瑞), Jin-Cheng Zhang(张进成), and Yue Hao(郝跃). Chin. Phys. B, 2023, 32(8): 087301.
[9] Assessing high-energy x-ray and proton irradiation effects on electrical properties of P-GaN and N-GaN thin films
Aoxue Zhong(钟傲雪), Lei Wang(王磊), Yun Tang(唐蕴), Yongtao Yang(杨永涛), Jinjin Wang(王进进), Huiping Zhu(朱慧平), Zhenping Wu(吴真平), Weihua Tang(唐为华), and Bo Li(李博). Chin. Phys. B, 2023, 32(7): 076102.
[10] High-performance vertical GaN field-effect transistor with an integrated self-adapted channel diode for reverse conduction
Siyu Deng(邓思宇), Dezun Liao(廖德尊), Jie Wei(魏杰), Cheng Zhang(张成),Tao Sun(孙涛), and Xiaorong Luo(罗小蓉). Chin. Phys. B, 2023, 32(7): 078503.
[11] Molecular dynamics study on the dependence of thermal conductivity on size and strain in GaN nanofilms
Ying Tang(唐莹), Junkun Liu(刘俊坤), Zihao Yu(于子皓), Ligang Sun(孙李刚), and Linli Zhu(朱林利). Chin. Phys. B, 2023, 32(6): 066502.
[12] Research on self-supporting T-shaped gate structure of GaN-based HEMT devices
Peng Zhang(张鹏), Miao Li(李苗), Jun-Wen Chen(陈俊文), Jia-Zhi Liu(刘加志), and Xiao-Hua Ma(马晓华). Chin. Phys. B, 2023, 32(6): 067305.
[13] Realization of high-efficiency AlGaN deep ultraviolet light-emitting diodes with polarization-induced doping of the p-AlGaN hole injection layer
Yi-Wei Cao(曹一伟), Quan-Jiang Lv(吕全江), Tian-Peng Yang(杨天鹏), Ting-Ting Mi(米亭亭),Xiao-Wen Wang(王小文), Wei Liu(刘伟), and Jun-Lin Liu(刘军林). Chin. Phys. B, 2023, 32(5): 058503.
[14] Optically pumped wavelength-tunable lasing from a GaN beam cavity with an integrated Joule heater pivoted on Si
Feifei Qin(秦飞飞), Yang Sun(孙阳), Ying Yang(杨颖), Xin Li(李欣), Xu Wang(王旭), Junfeng Lu(卢俊峰), Yongjin Wang(王永进), and Gangyi Zhu(朱刚毅). Chin. Phys. B, 2023, 32(5): 054210.
[15] Thickness effect on solar-blind photoelectric properties of ultrathin β-Ga2O3 films prepared by atomic layer deposition
Shao-Qing Wang(王少青), Ni-Ni Cheng(程妮妮), Hai-An Wang(王海安), Yi-Fan Jia(贾一凡), Qin Lu(陆芹), Jing Ning(宁静), Yue Hao(郝跃), Xiang-Tai Liu(刘祥泰), and Hai-Feng Chen(陈海峰). Chin. Phys. B, 2023, 32(4): 048502.
No Suggested Reading articles found!