CONDENSED MATTER: ELECTRONIC STRUCTURE, ELECTRICAL, MAGNETIC, AND OPTICAL PROPERTIES |
Prev
Next
|
|
|
Spontaneous isospin polarization and quantum Hall ferromagnetism in a rhombohedral trilayer graphene superlattice |
Xiangyan Han(韩香岩)1, Qianling Liu(刘倩伶)1, Ruirui Niu(牛锐锐)1, Zhuangzhuang Qu(曲壮壮)1, Zhiyu Wang(王知雨)1, Zhuoxian Li(李卓贤)1, Chunrui Han(韩春蕊)2,3,†, Kenji Watanabe4, Takashi Taniguchi4, Zizhao Gan(甘子钊)1, and Jianming Lu(路建明)1,‡ |
1 State Key Laboratory for Mesoscopic Physics, School of Physics, Peking University, Beijing 100871, China; 2 Institute of Microelectronics, Chinese Academy of Sciences, Beijing 100029, China; 3 University of Chinese Academy of Sciences, Beijing 100049, China; 4 National Institute for Materials Science, 1-1 Namiki, Tsukuba, 305-0044, Japan |
|
|
Abstract Moiré superlattices in van der Waals heterostructures have recently attracted enormous interests, due to the highly controllable electronic correlation that gives rise to superconductivity, ferromagnetism, and nontrivial topological properties. To gain a deep understanding of such exotic properties, it is essential to clarify the broken symmetry between spin and valley flavors which universally exists in these ground states. Here in a rhombohedral trilayer graphene crystallographically aligned with a hexagonal boron nitride, we report various kinds of symmetry-breaking transition tuned by displacement fields (D) and magnetic fields: (i) While it is well known that a finite D can enhance correlation to result in correlated insulators at fractional fillings of a flat band, we find the correlation gap emerges before the flavor is fully filled at a positive D, but the sequence is reversed at a negative D. (ii) Around zero D, electronic correlation can be invoked by narrow Landau levels, leading to quantum Hall ferromagnetism that lifts all the degeneracies including not only spin and valley but also orbital degrees of freedom. Our result unveils the complication of transitions between symmetry-breaking phases, shedding light on the mechanisms of various exotic phenomena in strongly correlated systems.
|
Received: 12 April 2023
Revised: 08 June 2023
Accepted manuscript online: 13 June 2023
|
PACS:
|
72.80.Vp
|
(Electronic transport in graphene)
|
|
73.40.-c
|
(Electronic transport in interface structures)
|
|
73.21.Cd
|
(Superlattices)
|
|
Fund: Project supported by the National Natural Science Foundation of China (Grant Nos. 11974027 and 62275265), the National Key Research and Development Program of China (Grant Nos. 2019YFA0307800 and 2021YFA1400100), and Beijing Natural Science Foundation (Grant Nos. Z190011 and 4222084). |
Corresponding Authors:
Chunrui Han, Jianming Lu
E-mail: hanchunrui@ime.ac.cn;jmlu@pku.edu.cn
|
Cite this article:
Xiangyan Han(韩香岩), Qianling Liu(刘倩伶), Ruirui Niu(牛锐锐), Zhuangzhuang Qu(曲壮壮), Zhiyu Wang(王知雨), Zhuoxian Li(李卓贤), Chunrui Han(韩春蕊), Kenji Watanabe, Takashi Taniguchi, Zizhao Gan(甘子钊), and Jianming Lu(路建明) Spontaneous isospin polarization and quantum Hall ferromagnetism in a rhombohedral trilayer graphene superlattice 2023 Chin. Phys. B 32 117201
|
[1] Cao Y, Fatemi V, Fang S, Watanabe K, Taniguchi T, Kaxiras E and Jarillo-Herrero P 2018 Nature 556 43 [2] Park J M, Cao Y, Watanabe K, Taniguchi T and Jarillo-Herrero P 2021 Nature 590 249 [3] Hao Z, Zimmerman A M, Ledwith P, Khalaf E, Najafabadi D H, Watanabe K, Taniguchi T, Vishwanath A and Kim P 2021 Science 371 1133 [4] Park J M, Cao Y, Xia L Q, Sun S, Watanabe K, Taniguchi T and Jarillo-Herrero P 2022 Nat. Mater. 21 877 [5] Cao Y, Fatemi V, Demir A, Fang S, Tomarken S L, Luo J Y, Sanchez-Yamagishi J D, Watanabe K, Taniguchi T, Kaxiras E, Ashoori R C and Jarillo-Herrero P 2018 Nature 556 80 [6] Sharpe A L, Fox E J, Barnard A W, Finney J, Watanabe K, Taniguchi T, Kastner M A and Goldhaber-Gordon D 2019 Science 365 605 [7] Serlin M, Tschirhart C L, Polshyn H, Zhang Y, Zhu J, Watanabe K, Taniguchi T, Balents L and Young A F 2020 Science 367 900 [8] Wu S, Zhang Z, Watanabe K, Taniguchi T and Andrei E Y 2021 Nat. Mater. 20 488 [9] Das I, Lu X, Herzog-Arbeitman J, Song Z D, Watanabe K, Taniguchi T, Bernevig B A and Efetov D K 2021 Nat. Phys. 17 710 [10] Chen G, Jiang L, Wu S, Lyu B, Li H, Chittari B L, Watanabe K, Taniguchi T, Shi Z, Jung J, Zhang Y and Wang F 2019 Nat. Phys. 15 237 [11] Chen G, Sharpe A L, Fox E J, Zhang Y H, Wang S, Jiang L, Lyu B, Li H, Watanabe K, Taniguchi T, Shi Z, Senthil T, Goldhaber-Gordon D, Zhang Y and Wang F 2020 Nature 579 56 [12] Chen G, Sharpe A L, Gallagher P, Rosen I T, Fox E J, Jiang L, Lyu B, Li H, Watanabe K, Taniguchi T, Jung J, Shi Z, Goldhaber-Gordon D, Zhang Y and Wang F 2019 Nature 572 215 [13] Yang J, Chen G, Han T, Zhang Q, Zhang Y-H, Jiang L, Lyu B, Li H, Watanabe K, Taniguchi T, Shi Z, Senthil T, Zhang Y, Wang F and Ju L 2022 Science 375 1295 [14] Park J M, Cao Y, Watanabe K, Taniguchi T and Jarillo-Herrero P 2021 Nature 592 43 [15] Zhou H, Xie T, Ghazaryan A, Holder T, Ehrets J R, Spanton E M, Taniguchi T, Watanabe K, Berg E, Serbyn M and Young A F 2021 Nature 598 429 [16] de la Barrera S C, Aronson S, Zheng Z, Watanabe K, Taniguchi T, Ma Q, Jarillo-Herrero P and Ashoori R 2022 Nat. Phys. 18 771 [17] Zondiner U, Rozen A, Rodan-Legrain D, Cao Y, Queiroz R, Taniguchi T, Watanabe K, Oreg Y, von Oppen F, Stern A, Berg E, Jarillo-Herrero P and Ilani S 2020 Nature 582 203 [18] Seiler A M, Geisenhof F R, Winterer F, Watanabe K, Taniguchi T, Xu T, Zhang F and Weitz R T 2022 Nature 608 298 [19] Saito Y, Yang F, Ge J, Liu X, Taniguchi T, Watanabe K, Li J I A, Berg E and Young A F 2021 Nature 592 220 [20] Rozen A, Park J M, Zondiner U, Cao Y, Rodan-Legrain D, Taniguchi T, Watanabe K, Oreg Y, Stern A, Berg E, Jarillo-Herrero P and Ilani S 2021 Nature 592 214 [21] Liu J and Dai X 2021 Nat. Rev. Phys. 3 367 [22] Cao Y, Park J M, Watanabe K, Taniguchi T and Jarillo-Herrero P 2021 Nature 595 526 [23] Stepanov P, Das I, Lu X, Fahimniya A, Watanabe K, Taniguchi T, Koppens F H L, Lischner J, Levitov L and Efetov D K 2020 Nature 583 375 [24] Saito Y, Ge J, Watanabe K, Taniguchi T and Young A F 2020 Nat. Phys. 16 926 [25] Liu X, Wang Z, Watanabe K, Taniguchi T, Vafek O and Li J I A 2021 Science 371 1261 [26] Zhou H, Xie T, Taniguchi T, Watanabe K and Young A F 2021 Nature 598 434 [27] Wong D, Nuckolls K P, Oh M, Lian B, Xie Y, Jeon S, Watanabe K, Taniguchi T, Bernevig B A and Yazdani A 2020 Nature 582 198 [28] Polshyn H, Zhu J, Kumar M A, Zhang Y, Yang F, Tschirhart C L, Serlin M, Watanabe K, Taniguchi T, MacDonald A H and Young A F 2020 Nature 588 66 [29] Chen S, He M, Zhang Y H, Hsieh V, Fei Z, Watanabe K, Taniguchi T, Cobden D H, Xu X, Dean C R and Yankowitz M 2021 Nat. Phys. 17 374 [30] He M, Zhang Y H, Li Y, Fei Z, Watanabe K, Taniguchi T, Xu X and Yankowitz M 2021 Nat. Commun. 12 4727 [31] Xu S, Al Ezzi M M, Balakrishnan N, Garcia-Ruiz A, Tsim B, Mullan C, Barrier J, Xin N, Piot B A, Taniguchi T, Watanabe K, Carvalho A, Mishchenko A, Geim A K, Fal'ko V I, Adam S, Neto A H C, Novoselov K S and Shi Y 2021 Nat. Phys. 17 619 [32] Lui C H, Li Z, Chen Z, Klimov P V, Brus L E and Heinz T F 2011 Nano Lett. 11 164 [33] Ding D, Niu R, Han X, Qu Z, Wang Z, Li Z, Liu Q, Han C and Lu J 2023 Chin. Phys. B 32 067204 [34] Krishna Kumar R, Chen X, Auton G H, Mishchenko A, Bandurin D A, Morozov S V, Cao Y, Khestanova E, Ben Shalom M, Kretinin A V, Novoselov K S, Eaves L, Grigorieva I V, Ponomarenko L A, Fal'ko V I and Geim A K 2017 Science 357 181 [35] Krishna Kumar R, Mishchenko A, Chen X, Pezzini S, Auton G H, Ponomarenko L A, Zeitler U, Eaves L, Fal'ko V I and Geim A K 2018 Proc. Natl. Acad. Sci. USA 115 5135 [36] Barrier J, Kumaravadivel P, Krishna Kumar R, Ponomarenko L A, Xin N, Holwill M, Mullan C, Kim M, Gorbachev R V, Thompson M D, Prance J R, Taniguchi T, Watanabe K, Grigorieva I V, Novoselov K S, Mishchenko A, Fal'ko V I, Geim A K and Berdyugin A I 2020 Nat. Commun. 11 5756 [37] Yankowitz M, Xue J, Cormode D, Sanchez-Yamagishi J D, Watanabe K, Taniguchi T, Jarillo-Herrero P, Jacquod P and LeRoy B J 2012 Nat. Phys. 8 382 [38] Lui C H, Li Z, Mak K F, Cappelluti E and Heinz T F 2011 Nat. Phys. 7 944 [39] Zou K, Zhang F, Clapp C, MacDonald A H and Zhu J 2013 Nano Lett. 13 369 [40] Liu X, Hao Z, Khalaf E, Lee J Y, Ronen Y, Yoo H, Haei Najafabadi D, Watanabe K, Taniguchi T, Vishwanath A and Kim P 2020 Nature 583 221 [41] He M, Li Y, Cai J, Liu Y, Watanabe K, Taniguchi T, Xu X and Yankowitz M 2021 Nat. Phys. 17 26 [42] Shen C, Chu Y, Wu Q, Li N, Wang S, Zhao Y, Tang J, Liu J, Tian J, Watanabe K, Taniguchi T, Yang R, Meng Z Y, Shi D, Yazyev O V and Zhang G 2020 Nat. Phys. 16 520 [43] Cao Y, Rodan-Legrain D, Rubies-Bigorda O, Park J M, Watanabe K, Taniguchi T and Jarillo-Herrero P 2020 Nature 583 215 [44] Patri A S and Senthil T 2023 Phys. Rev. B 107 165122 [45] Lee K, Fallahazad B, Xue J, Dillen D C, Kim K, Taniguchi T, Watanabe K and Tutuc E 2014 Science 345 58 [46] Lee Y, Tran D, Myhro K, Velasco J Jr, Gillgren N, Poumirol J M, Smirnov D, Barlas Y and Lau C N 2016 Nano Lett. 16 227 [47] Yin L J, Shi L J, Li S Y, Zhang Y, Guo Z H and He L 2019 Phys. Rev. Lett. 122 146802 [48] Zhang L, Zhang Y, Camacho J, Khodas M and Zaliznyak I 2011 Nat. Phys. 7 953 [49] Bao W, Jing L, Velasco J, Lee Y, Liu G, Tran D, Standley B, Aykol M, Cronin S B, Smirnov D, Koshino M, McCann E, Bockrath M and Lau C N 2011 Nat. Phys. 7 948 |
No Suggested Reading articles found! |
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
Altmetric
|
blogs
Facebook pages
Wikipedia page
Google+ users
|
Online attention
Altmetric calculates a score based on the online attention an article receives. Each coloured thread in the circle represents a different type of online attention. The number in the centre is the Altmetric score. Social media and mainstream news media are the main sources that calculate the score. Reference managers such as Mendeley are also tracked but do not contribute to the score. Older articles often score higher because they have had more time to get noticed. To account for this, Altmetric has included the context data for other articles of a similar age.
View more on Altmetrics
|
|
|