Special Issue:
SPECIAL TOPIC — Celebrating the 100th Anniversary of Physics Discipline of Northwest University
|
SPECIAL TOPIC—Celebrating the 100th Anniversary of Physics Discipline of Northwest University |
Prev
Next
|
|
|
Fabrication and research of bi-functional CuNi2S4 nanosheets decorated TiO2/CuNi2S4 heterojunction photoanode for photoelectrochemical water splitting |
Wei Jin(金伟), Liyuan Zhang(张立媛), Wenjing Zhang(张文静), Qian Sun(孙倩), Dekai Zhang(张德恺), Hui Miao(苗慧)†, and Xiaoyun Hu(胡晓云)‡ |
School of Physics, Northwest University, Xi'an 710127, China |
|
|
Abstract As a traditional n-type semiconductor, TiO2 has good UV absorption ability and stable physical and chemical properties. However, its wide band gap and low oxygen evolution reaction (OER) activity limit its application in the field of photoelectrochemical (PEC) water splitting. In this work, a type-II TiO2/CuNi2S4 heterojunction photoanode is successfully constructed, which expanded the light absorption range to visible and enhanced the OER activity. Firstly, TiO2 nanotubes (NTs) thin films are prepared on Ti substrates by two-step anodization, and then the bi-functional electrocatalytic material CuNi2S4 is grown on TiO2 NTs in the shape of nanosheets (NSs) in situ by solvothermal method. As a bi-functional electrocatalytic material, CuNi2S4 has good visible light absorption property as well as OER catalytic activity. Compared with TiO2, the IPCE value of TiO2/CuNi2S4 is 2.59% at 635 nm, and that of TiO2 is a mere 0.002%. The separation efficiency and injection efficiency increase from 2.49% and 31.52% to 3.61% and 87.77%, respectively. At 1.23 V vs. RHE, the maximum photocurrent density is 0.26 mA/cm2, which is 2.6 times than that of TiO2 (0.11 mA/cm2), and can be maintained at 0.25 mA/cm2 for at least 2 h under light illumination. Moreover, a hydrogen production rate of 4.21 μ mol· cm-2·h-1 is achieved within 2 h. This work provides a new idea for the application of TiO2 in the field of PEC water splitting and the construction of efficient and stable photoelectronic devices.
|
Received: 16 May 2023
Revised: 28 July 2023
Accepted manuscript online: 11 August 2023
|
PACS:
|
82.47.Jk
|
(Photoelectrochemical cells, photoelectrochromic and other hybrid electrochemical energy storage devices)
|
|
81.07.-b
|
(Nanoscale materials and structures: fabrication and characterization)
|
|
85.35.Kt
|
(Nanotube devices)
|
|
Fund: Project supported by the National Natural Science Foundation of China (Grant Nos. 11974276 and 11804274), the Natural Science Foundation of Shaanxi Province of China (Grant No. 2023-JC-YB-139), the Open Research Fund of State Key Laboratory of Transient Optics and Photonics, and the Chinese Academy of Sciences (Grant No. SKLST202211). |
Corresponding Authors:
Hui Miao, Xiaoyun Hu
E-mail: huim@nwu.edu.cn;hxy3275@nwu.edu.cn
|
Cite this article:
Wei Jin(金伟), Liyuan Zhang(张立媛), Wenjing Zhang(张文静), Qian Sun(孙倩), Dekai Zhang(张德恺), Hui Miao(苗慧), and Xiaoyun Hu(胡晓云) Fabrication and research of bi-functional CuNi2S4 nanosheets decorated TiO2/CuNi2S4 heterojunction photoanode for photoelectrochemical water splitting 2023 Chin. Phys. B 32 118201
|
[1] Li S, Wang C, Cai M, Yang F, Liu Y, Chen J, Zhang P, Li X and Chen X 2022 Chem. Eng. J. 428 131158 [2] Yang W and Moon J 2019 ChemSusChem 12 1889 [3] Vickers N J 2017 Curr. Biol. 27 R713 [4] Mufutau O B 2021 Energy 228 120519 [5] Leonard M D, Michaelides E E and Michaelides D N 2020 Renew. Energ. 145 951 [6] Lebrouhi B E, Djoupo J J, Lamrani B, Benabdelaziz K and Kousksou T 2022 Int. J. Hydrogen Energy 47 7016 [7] Liu L, Wang Y, Wang Z, Li S, Li J, He G, Li Y, Liu Y, Piao S, Gao Z, Chang R, Tang W, Jiang K, Wang S, Wang J, Zhao L and Chao Q 2022 Resour. Conserv. Recycl. 180 106155 [8] Li Z, Luo Z, Wang Y, Fan G and Zhang J 2022 Renew. Energ. 184 564 [9] Wang G, Chao Y, Jiang T and Chen Z 2022 Sci. Total Environ. 814 151927 [10] Darmawi, Sipahutar R, Bernas S M and Imanuddin M S 2013 Renew. Sust. Energ. Rev. 17 213 [11] Dawood F, Anda M and Shafiullah G M 2020 Int. J. Hydrogen Energy 45 3847 [12] Sazali N 2020 Int. J. Hydrogen Energy 45 18753 [13] Tarhan C and Çil M A 2021 J. Energy Storage 40 102676 [14] Niu F, Wang D, Li F, Liu Y, Shen S and Meyer T J 2019 Adv. Energy Mater. 10 1900399 [15] Arifin K, Yunus R M, Minggu L J and Kassim M B 2021 Int. J. Hydrogen Energy 46 4998 [16] Reddy C V, Reddy K R, Shetti N P, Shim J, Aminabhavi T M and Dionysiou D D 2020 Int. J. Hydrogen Energy 45 18331 [17] Guo X, Li M, Qiu L, Tian F, He L, Geng S, Liu Y, Song Y, Yang W and Yu Y 2023 Chem. Eng. J. 453 139796 [18] Wang Y, Qiu L, Bao S, Tian F, Sheng J, Yang W and Yu Y 2023 Sep. Purif. Technol. 316 123779 [19] Zhang X, Gao M, Qiu L, Sheng J, Yang W and Yu Y 2023 J. Energy Chem. 79 64 [20] Zhang X, Gao M, Qiu L, Yang W and Yu Y 2023 Chem. Eng. J. 465 142747 [21] Zhang X, Tian F, Lan X, Liu Y, Yang W, Zhang J and Yu Y 2022 Chem. Eng. J. 429 132588 [22] Gao J, Xue J, Jia S, Shen Q, Zhang X, Jia H, Liu X, Li Q and Wu Y 2021 ACS Appl. Mater. Interfaces 13 18758 [23] Zhang W, Xue J, Shen Q, Jia S, Gao J, Liu X and Jia H 2021 J. Alloys Compd. 870 159400 [24] Lin S W, Tong M H, Chen Y X, Chen R, Zhao H P, Jiang X, Yang K and Lu C Z 2023 ACS Appl. Energy Mater. 6 1093 [25] Hou J, Kong L, Xie Y, Ma J, Liu Y, Chen M and Wang Q 2022 Ceram. Int. 48 3941 [26] Zhang S, Liu Z, Chen D, Guo Z and Ruan M 2020 Chem. Eng. J. 395 125101 [27] Jia Y, Liu P, Wang Q, Wu Y, Cao D and Qiao Q A 2021 J. Colloid Inter. Sci. 585 459 [28] Gao B, Sun M, Ding W, Ding Z and Liu W 2021 Appl. Catal. B 281 119492 [29] Song X, Zhou H and Jiang C 2021 Chin. Phys. B 30 058505 [30] Cheng Q, Yuan Y J, Tang R, Liu Q Y, Bao L, Wang P, Zhong J, Zhao Z, Yu Z T and Zou Z 2022 ACS Catal. 12 2118 [31] Song Y, Waterhouse G I N, Han F, Li Y and Ai S 2021 ChemCatChem 13 2931 [32] Zimbone M, Cantarella M, Impellizzeri G, Battiato S and Calcagno L 2021 Molecules 26 1420 [33] Meng M, Li C, Li J, Wu J, Feng Y, Sun L, Yuan H and Liu K 2023 J. Phys. D:Appl. Phys. 56 055502 [34] Tong M H, Wang T M, Lin S W, Chen R, Jiang X, Chen Y X and Lu C Z 2023 Appl. Surf. Sci. 623 156980 [35] Xiao Z, Cheng S, Liao W, Fan D, Lu H and Liu Y 2022 Int. J. Electrochem. Sci. 17 220817 [36] Frank A J, Kopidakis N and Lagemaat J V D 2004 Coord. Chem. Rev. 248 1165 [37] Mor G K, Shankar K, Paulose M, Varghese O K and Grimes C A 2005 Nano Lett. 6 215 [38] Hejazi S, Mohajernia S, Osuagwu B, Zoppellaro G, Andryskova P, Tomanec O, Kment S, Zboril R and Schmuki P 2020 Adv. Mater. 32 1908505 [39] Park H, Park Y, Kim W and Choi W 2013 J. Photoch. Photobi. C 15 1 [40] Jia G, Wang Y, Cui X, Zhang H, Zhao J, Li L H, Gu L, Zhang Q, Zheng L, Wu J, Wu Q, Singh D J, Li W, Zhang L and Zheng W 2022 Matter 5 206 [41] Xu A, Tu W, Shen S, Lin Z, Gao N and Zhong W 2020 Appl. Surf. Sci. 528 146949 [42] Singh J, Juneja S, Soni R K and Bhattacharya J 2021 J. Colloid Interface Sci. 590 60 [43] Tang T, Yin Z, Chen J, Zhang S, Sheng W, Wei W, Xiao Y, Shi Q and Cao S 2021 Chem. Eng. J. 417 128058 [44] Li Y, Wu Q, Chen Y, Zhang R, Li C, Zhang K, Li M, Lin Y, Wang D, Zou X and Xie T 2021 Appl. Catal. B 290 120058 [45] Hou L, Bu Q, Li S, Wang D and Xie T 2016 RSC Adv. 6 99081 [46] Ahmad A, Tezcan F, Yerlikaya G, Zia-ur-Rehman, Paksoy H and Kardaş G 2021 J. Alloys Compd. 868 159133 [47] Kalanur S S, Lee S H, Hwang Y J and Joo O S 2013 J. Photoch. Photobio. A 259 1 [48] Ito S, Tanaka S, Manabe K and Nishino H 2014 J. Phys. Chem. C 118 16995 [49] Wang Y, Tang R, Huang L, Qian C, Lian W, Zhu C and Chen T 2022 ACS Appl. Mater. Interfaces 14 33181 [50] Lu X, Liu L, Xie X, Cui Y, Oguzie E E and Wang F 2020 J. Mater. Sci. Technol. 37 55 [51] Guo H, Jiang N, Wang H, Shang K, Lu N, Li J and Wu Y 2019 Appl. Catal. B 248 552 [52] Zhao D, Sheng G, Chen C and Wang X 2012 Appl. Catal. B 111-112 303 [53] Chen L, Zhou Y, Dai H, Yu T, Liu J and Zou Z 2015 Nano Energy 11 697 [54] Zhu J, Cheng Y, Zhang W, Zhao J, Sun Q, Hu X and Miao H 2022 Appl. Surf. Sci. 601 154188 [55] Kottayi R, Ilangovan V and Sittaramane R 2022 Optik 255 168692 [56] Park J, Lee T H, Kim C, Lee S A, Choi M J, Kim H, Yang J W, Lim J and Jang H W 2021 Appl. Catal. B 295 120276 [57] Li H, Song W, Cui X, Li Y, Hou B, Cheng L and Zhang P 2021 Nano Energy 16 10 [58] Nouseen S, Singh P, Lavate S, Chattopadhyay J, Kuchkaev A M, Yakhvarov D G and Srivastava R 2022 Catal. Today 397-399 618 [59] Mao M, Xu J, Yu X and Liu Y 2020 Dalton Trans. 49 6457 [60] Adarakatti P S, Mahanthappa M, Hughes J P, Rowley-Neale S J, Smith G C, Ashoka S and Banks C E 2019 Int. J. Hydrogen Energy 44 16069 [61] Zhu X and Liu S 2022 J. Energy Storage 51 104582 [62] Yin Y, Li J, Wang Y, Wan J, Du X, Hu X, Liu E and Fan J 2017 Mater. Res. Bull. 88 33 [63] Deng X, Zhang H, Guo R, Cui Y, Ma Q, Zhang X, Cheng X, Li B, Xie M and Cheng Q 2018 Sep. Purif. Technol. 193 264 [64] Jiang X, Sun M, Chen Z, Jing J and Feng C 2020 J. Alloys Compd. 816 152533 [65] Liu Q, Lu H, Shi Z, Wu F, Guo J, Deng K and Li L 2014 ACS Appl. Mater. Interfaces 6 17200 [66] Hu J, Cao Y, Xie J and Jia D 2017 Ceram. Int. 43 11109 [67] Chen C C, Shaya J, Polychronopoulou K, Golovko V B, Tesana S, Wang S Y and Lu C S 2021 Nanomaterials 11 1325 [68] Dai X C, Huang M H, Li Y B, Li T, Zhang B B, He Y, Xiao G and Xiao F X 2019 J. Mater. Chem. A 7 2741 |
No Suggested Reading articles found! |
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
Altmetric
|
blogs
Facebook pages
Wikipedia page
Google+ users
|
Online attention
Altmetric calculates a score based on the online attention an article receives. Each coloured thread in the circle represents a different type of online attention. The number in the centre is the Altmetric score. Social media and mainstream news media are the main sources that calculate the score. Reference managers such as Mendeley are also tracked but do not contribute to the score. Older articles often score higher because they have had more time to get noticed. To account for this, Altmetric has included the context data for other articles of a similar age.
View more on Altmetrics
|
|
|