Please wait a minute...
Chin. Phys. B, 2023, Vol. 32(11): 110301    DOI: 10.1088/1674-1056/acdc12
GENERAL Prev   Next  

Optimal driving field for multipartite quantum battery coupled with a common thermal bath

Z Q Yang(杨梓骞), L K Zhou(周立坤), Z Y Zhou(周正阳), G R Jin(金光日), L Cheng(程龙), and X G Wang(王晓光)
1 Physics Department, Zhejiang Sci-Tech University, Hangzhou 310018, China;
2 Zhejiang Institute of Modern Physics, Department of Physics, Zhejiang University, Hangzhou 310027, China
Abstract  For a many-atom battery coupled with a common thermal bath, the useful energy is maximized at an optimal number of the atoms for a fixed harmonic driving field, i.e., the so-called optimal building block [see Chang et al. New J. Phys. 23 103026 (2021)]. Here we consider the useful energy defined by the ergotropy and a continuous-wave driving field. For the single-atom case, we present analytical results of the increased energy and the ergotropy in the long-time limit (i.e., the steady-state ergotropy). It is found that there exists an optimal value of the driving-field strength. Such an observation holds for many-atom cases. Numerically, we show that the optimal strength increases linearly with the number N of the atoms. Using the optimal strength for each N, both the increased energy and the ergotropy increase monotonically with N.
Keywords:  quantum mechanics      thermodynamics  
Received:  27 April 2023      Revised:  05 June 2023      Accepted manuscript online:  07 June 2023
PACS:  03.65.-w (Quantum mechanics)  
  05.70.-a (Thermodynamics)  
Fund: Project supported by the National Natural Science Foundation of China (Grant Nos. 12075209, 11905185, and 11935012) and partially supported by the Science Foundation of Zhejiang Sci-Tech University (Grant No. 18062145-Y).
Corresponding Authors:  L Cheng, X G Wang     E-mail:  lcheng@zstu.edu.cn;xgwang@zju.edu.cn

Cite this article: 

Z Q Yang(杨梓骞), L K Zhou(周立坤), Z Y Zhou(周正阳), G R Jin(金光日), L Cheng(程龙), and X G Wang(王晓光) Optimal driving field for multipartite quantum battery coupled with a common thermal bath 2023 Chin. Phys. B 32 110301

[1] Bhattacharjee S and Dutta A 2021 J. Phys. A:Math. Theor. 94 239
[2] Binder F, Correa L A, Gogolin C, Anders J and Adesso G E 2018 Thermodynamics in the Quantum Regime (Fundamental Aspects and New Directions) (Berlin:Springer) p. 207
[3] Kamin F H, Tabesh F T, Salimi S and Santos A C 2020 Phys. Rev. E 102 052109
[4] Rossini D, Andolina G M, Rosa D, Carrega M and Polini M 2020 Phys. Rev. Lett. 125 236402
[5] Gyhm J Y, Šafránek D and Rosa D 2022 Phys. Rev. Lett. 128 140501
[6] Alicki R and Fannes M 2013 Phys. Rev. E 87 042123
[7] Hovhannisyan K V, Perarnau-Llobet M, Huber M and Acín A 2013 Phys. Rev. Lett. 111 240401
[8] Andolina G M, Keck M, Mari A, Giovannetti V and Polini M 2019 Phys. Rev. B 99 205437
[9] Peng L, He W B, Chesi S, Lin H Q and Guan X W 2021 Phys. Rev. A 103 052220
[10] Le T P, Levinsen J, Modi K, Parish M M and Pollock F A 2018 Phys. Rev. A 97 022106
[11] Juliá-Farré S, Salamon T, Riera A, Bera M N and Lewenstein M 2020 Phys. Rev. Res. 2 023113
[12] Seah S, Perarnau-Llobet M, Haack G, Brunner N and Nimmrichter S 2021 Phys. Rev. Lett. 127 100601
[13] Chen P, Yin T S, Jiang Z Q and Jin G R 2022 Phys. Rev. E 106 054119
[14] Shaghaghi V, Singh V, Benenti G and Rosa D 2022 Quantum Sci. Technol. 7 04LT01
[15] Salvia R, Perarnau-Llobet M, Haack G, Brunner N and Nimmrichter S 2023 Phys. Rev. Res. 5 013155
[16] Levy A, Diosi L and Kosloff R 2016 Phys. Rev. A 93 052119
[17] Seah S, Nimmrichter S and Scarani V 2018 New J. Phys. 20 043045
[18] Ferraro D, Campisi M, Andolina G M, Pellegrini V and Polini M 2018 Phys. Rev. Lett. 120 117702
[19] Andolina G M, Farina D, Mari A, Pellegrini V, Giovannetti V and Polini M 2018 Phys. Rev. B 98 205423
[20] Andolina G M, Keck M, Mari A, Campisi M, Giovannetti V and Polini M 2019 Phys. Rev. Lett. 122 047702
[21] Monsel J, Fellous-Asiani M, Huard B and Aufféves A 2020 Phys. Rev. Lett. 124 130601
[22] Crescente A, Carrega M, Sassetti M and Ferraro D 2020 Phy. Rev. B 102 245407
[23] Quach J Q, McGhee K E, Ganzer L, Rouse D M, Lovett B W, Gauger E M, Keeling J, Cerullo G, Lidzey D G and Virgili T 2022 Sci. Adv. 8 eabk3160
[24] Binder F C, Vinjanampathy S, Modi K and Goold J 2015 New J. Phys. 17 075015
[25] Campaioli F, Pollock F A, Binder F C, Céleri L, Goold J, Vinjanampathy S and Modi K 2017 Phys. Rev. Lett. 118 150601
[26] Fusco L, Paternostro M and De Chiara G 2016 Phys. Rev. E 94 052122
[27] Farina D, Andolina G M, Mari A, Polini M and Giovannetti V 2019 Phys. Rev. B 99 035421
[28] Zhang Y Y, Yang T R, Fu L and Wang X G 2019 Phys. Rev. E 99 052106
[29] Chang W, Yang T R, Dong H, Fu L, Wang X G and Zhang Y Y 2021 New J. Phys. 23 103026
[30] Allahverdyan A E, Balian R and Nieuwenhuizen Th M 2004 Europhys. Lett. 67 565
[31] Johansson J R, Nation P D and Nori F 2012 Comput. Phys. Commun. 183 1760
[32] Ficek Z and Swain S 2005 Quantum Interference and Coherence (New York:Springer) p. 62
[1] Shadow thermodynamics of AdS black hole with the nonlinear electrodynamics term
He-Bin Zheng(郑何斌), Ping-Hui Mou(牟平辉), Yun-Xian Chen(陈芸仙), and Guo-Ping Li(李国平). Chin. Phys. B, 2023, 32(8): 080401.
[2] Lorentz quantum computer
Wenhao He(何文昊), Zhenduo Wang(王朕铎), and Biao Wu(吴飙). Chin. Phys. B, 2023, 32(4): 040304.
[3] The application of quantum coherence as a resource
Si-Yuan Liu(刘思远) and Heng Fan(范桁). Chin. Phys. B, 2023, 32(11): 110304.
[4] Thermodynamics of warm axionic Abelian gauge inflation
Xi-Bin Li(李喜彬) and Yan-Ling Wu(武燕玲). Chin. Phys. B, 2023, 32(11): 119801.
[5] Quantum Stirling heat engine with squeezed thermal reservoir
Nikolaos Papadatos. Chin. Phys. B, 2023, 32(10): 100702.
[6] Molecular dynamics simulations of mechanical properties of epoxy-amine: Cross-linker type and degree of conversion effects
Yongqin Zhang(张永钦), Hua Yang(杨华), Yaguang Sun(孙亚光),Xiangrui Zheng(郑香蕊), and Yafang Guo(郭雅芳). Chin. Phys. B, 2022, 31(6): 064209.
[7] Pseudospin symmetric solutions of the Dirac equation with the modified Rosen—Morse potential using Nikiforov—Uvarov method and supersymmetric quantum mechanics approach
Wen-Li Chen(陈文利) and I B Okon. Chin. Phys. B, 2022, 31(5): 050302.
[8] Understanding the battery safety improvement enabled by a quasi-solid-state battery design
Luyu Gan(甘露雨), Rusong Chen(陈汝颂), Xiqian Yu(禹习谦), and Hong Li(李泓). Chin. Phys. B, 2022, 31(11): 118202.
[9] Detection of multi-spin interaction of a quenched XY chain by the average work and the relative entropy
Xiu-Xing Zhang(张修兴), Fang-Jv Li(李芳菊), Kai Wang(王凯), Jing Xue(薛晶), Guang-Wen Huo(霍广文), Ai-Ping Fang(方爱平), and Hong-Rong Li(李宏荣). Chin. Phys. B, 2021, 30(9): 090504.
[10] Effect of radiation on compressibility of hot dense sodium and iron plasma using improved screened hydrogenic model with l splitting
Amjad Ali, G Shabbir Naz, Rukhsana Kouser, Ghazala Tasneem, M Saleem Shahzad, Aman-ur-Rehman, and M H Nasim. Chin. Phys. B, 2021, 30(3): 033102.
[11] Impact of counter-rotating-wave term on quantum heat transfer and phonon statistics in nonequilibrium qubit-phonon hybrid system
Chen Wang(王晨), Lu-Qin Wang(王鲁钦), and Jie Ren(任捷). Chin. Phys. B, 2021, 30(3): 030506.
[12] Geometry of time-dependent $\mathcal{PT}$-symmetric quantum mechanics
Da-Jian Zhang(张大剑), Qing-hai Wang(王清海), and Jiangbin Gong(龚江滨). Chin. Phys. B, 2021, 30(10): 100307.
[13] A polaron theory of quantum thermal transistor in nonequilibrium three-level systems
Chen Wang(王晨), Da-Zhi Xu(徐大智). Chin. Phys. B, 2020, 29(8): 080504.
[14] Perspective for aggregation-induced delayed fluorescence mechanism: A QM/MM study
Jie Liu(刘杰), Jianzhong Fan(范建忠), Kai Zhang(张凯), Yuchen Zhang(张雨辰), Chuan-Kui Wang(王传奎), Lili Lin(蔺丽丽). Chin. Phys. B, 2020, 29(8): 088504.
[15] Establishment and evaluation of a co-effect structure with thermal concentration-rotation function in transient regime
Yi-yi Li(李依依), Hao-chun Zhang(张昊春). Chin. Phys. B, 2020, 29(8): 084401.
No Suggested Reading articles found!