|
|
Optimal driving field for multipartite quantum battery coupled with a common thermal bath |
Z Q Yang(杨梓骞), L K Zhou(周立坤), Z Y Zhou(周正阳), G R Jin(金光日), L Cheng(程龙)†, and X G Wang(王晓光)‡ |
1 Physics Department, Zhejiang Sci-Tech University, Hangzhou 310018, China; 2 Zhejiang Institute of Modern Physics, Department of Physics, Zhejiang University, Hangzhou 310027, China |
|
|
Abstract For a many-atom battery coupled with a common thermal bath, the useful energy is maximized at an optimal number of the atoms for a fixed harmonic driving field, i.e., the so-called optimal building block [see Chang et al. New J. Phys. 23 103026 (2021)]. Here we consider the useful energy defined by the ergotropy and a continuous-wave driving field. For the single-atom case, we present analytical results of the increased energy and the ergotropy in the long-time limit (i.e., the steady-state ergotropy). It is found that there exists an optimal value of the driving-field strength. Such an observation holds for many-atom cases. Numerically, we show that the optimal strength increases linearly with the number N of the atoms. Using the optimal strength for each N, both the increased energy and the ergotropy increase monotonically with N.
|
Received: 27 April 2023
Revised: 05 June 2023
Accepted manuscript online: 07 June 2023
|
PACS:
|
03.65.-w
|
(Quantum mechanics)
|
|
05.70.-a
|
(Thermodynamics)
|
|
Fund: Project supported by the National Natural Science Foundation of China (Grant Nos. 12075209, 11905185, and 11935012) and partially supported by the Science Foundation of Zhejiang Sci-Tech University (Grant No. 18062145-Y). |
Corresponding Authors:
L Cheng, X G Wang
E-mail: lcheng@zstu.edu.cn;xgwang@zju.edu.cn
|
Cite this article:
Z Q Yang(杨梓骞), L K Zhou(周立坤), Z Y Zhou(周正阳), G R Jin(金光日), L Cheng(程龙), and X G Wang(王晓光) Optimal driving field for multipartite quantum battery coupled with a common thermal bath 2023 Chin. Phys. B 32 110301
|
[1] Bhattacharjee S and Dutta A 2021 J. Phys. A:Math. Theor. 94 239 [2] Binder F, Correa L A, Gogolin C, Anders J and Adesso G E 2018 Thermodynamics in the Quantum Regime (Fundamental Aspects and New Directions) (Berlin:Springer) p. 207 [3] Kamin F H, Tabesh F T, Salimi S and Santos A C 2020 Phys. Rev. E 102 052109 [4] Rossini D, Andolina G M, Rosa D, Carrega M and Polini M 2020 Phys. Rev. Lett. 125 236402 [5] Gyhm J Y, Šafránek D and Rosa D 2022 Phys. Rev. Lett. 128 140501 [6] Alicki R and Fannes M 2013 Phys. Rev. E 87 042123 [7] Hovhannisyan K V, Perarnau-Llobet M, Huber M and Acín A 2013 Phys. Rev. Lett. 111 240401 [8] Andolina G M, Keck M, Mari A, Giovannetti V and Polini M 2019 Phys. Rev. B 99 205437 [9] Peng L, He W B, Chesi S, Lin H Q and Guan X W 2021 Phys. Rev. A 103 052220 [10] Le T P, Levinsen J, Modi K, Parish M M and Pollock F A 2018 Phys. Rev. A 97 022106 [11] Juliá-Farré S, Salamon T, Riera A, Bera M N and Lewenstein M 2020 Phys. Rev. Res. 2 023113 [12] Seah S, Perarnau-Llobet M, Haack G, Brunner N and Nimmrichter S 2021 Phys. Rev. Lett. 127 100601 [13] Chen P, Yin T S, Jiang Z Q and Jin G R 2022 Phys. Rev. E 106 054119 [14] Shaghaghi V, Singh V, Benenti G and Rosa D 2022 Quantum Sci. Technol. 7 04LT01 [15] Salvia R, Perarnau-Llobet M, Haack G, Brunner N and Nimmrichter S 2023 Phys. Rev. Res. 5 013155 [16] Levy A, Diosi L and Kosloff R 2016 Phys. Rev. A 93 052119 [17] Seah S, Nimmrichter S and Scarani V 2018 New J. Phys. 20 043045 [18] Ferraro D, Campisi M, Andolina G M, Pellegrini V and Polini M 2018 Phys. Rev. Lett. 120 117702 [19] Andolina G M, Farina D, Mari A, Pellegrini V, Giovannetti V and Polini M 2018 Phys. Rev. B 98 205423 [20] Andolina G M, Keck M, Mari A, Campisi M, Giovannetti V and Polini M 2019 Phys. Rev. Lett. 122 047702 [21] Monsel J, Fellous-Asiani M, Huard B and Aufféves A 2020 Phys. Rev. Lett. 124 130601 [22] Crescente A, Carrega M, Sassetti M and Ferraro D 2020 Phy. Rev. B 102 245407 [23] Quach J Q, McGhee K E, Ganzer L, Rouse D M, Lovett B W, Gauger E M, Keeling J, Cerullo G, Lidzey D G and Virgili T 2022 Sci. Adv. 8 eabk3160 [24] Binder F C, Vinjanampathy S, Modi K and Goold J 2015 New J. Phys. 17 075015 [25] Campaioli F, Pollock F A, Binder F C, Céleri L, Goold J, Vinjanampathy S and Modi K 2017 Phys. Rev. Lett. 118 150601 [26] Fusco L, Paternostro M and De Chiara G 2016 Phys. Rev. E 94 052122 [27] Farina D, Andolina G M, Mari A, Polini M and Giovannetti V 2019 Phys. Rev. B 99 035421 [28] Zhang Y Y, Yang T R, Fu L and Wang X G 2019 Phys. Rev. E 99 052106 [29] Chang W, Yang T R, Dong H, Fu L, Wang X G and Zhang Y Y 2021 New J. Phys. 23 103026 [30] Allahverdyan A E, Balian R and Nieuwenhuizen Th M 2004 Europhys. Lett. 67 565 [31] Johansson J R, Nation P D and Nori F 2012 Comput. Phys. Commun. 183 1760 [32] Ficek Z and Swain S 2005 Quantum Interference and Coherence (New York:Springer) p. 62 |
No Suggested Reading articles found! |
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
Altmetric
|
blogs
Facebook pages
Wikipedia page
Google+ users
|
Online attention
Altmetric calculates a score based on the online attention an article receives. Each coloured thread in the circle represents a different type of online attention. The number in the centre is the Altmetric score. Social media and mainstream news media are the main sources that calculate the score. Reference managers such as Mendeley are also tracked but do not contribute to the score. Older articles often score higher because they have had more time to get noticed. To account for this, Altmetric has included the context data for other articles of a similar age.
View more on Altmetrics
|
|
|