Please wait a minute...
Chin. Phys. B, 2023, Vol. 32(11): 110505    DOI: 10.1088/1674-1056/acc44f
GENERAL Prev   Next  

Dissipation and amplification management in an electrical model of microtubules: Hybrid behavior network

Sedric Ndoungalah1, Guy Roger Deffo2,†, Arnaud Djine1, and Serge Bruno Yamgoué3
1 Department of Physics, Faculty of Science, University of Bamenda, P. O. Box 39 Bamenda, Cameroon;
2 Research Unit of Automation and Applied Computers(UR-AIA), Department of Electrical Engineering, IUT-FV of Bandjoun, University of Dschang, BP 134, Bandjoun, Cameroon;
3 Department of Physics, Higher Teacher Training College Bambili, The University of Bamenda, P. O. Box 39 Bamenda, Cameroon
Abstract  The control of dissipation and amplification of solitary waves in an electrical model of a microtubule is demonstrated. This model consists of a shunt nonlinear resistance-capacitance (J(V)-C(V)) circuit and a series resistance-inductance (R-L) circuit. Through linear dispersion analysis, two features of the network are found, that is, low bandpass and bandpass filter characteristics. The effects of the conductance's parameter λ on the linear dispersion curve are also analyzed. It appears that an increase of λ induces a decrease (an increase) of the width of the bandpass filter for positive (negative) values of λ. By applying the reductive perturbation method, we derive the equation governing the dynamics of the modulated waves in the system. This equation is the well-known nonlinear Schrödinger equation extended by a linear term proportional to a hybrid parameter σ, i.e., a dissipation or amplification coefficient. Based on this parameter, we successfully demonstrate the hybrid behavior (dissipation and amplification) of the system. The exact and approximate solitary wave solutions of the obtained equation are derived, and the effects of the coefficient σ on the characteristic parameters of these waves are investigated. Using the analytical solutions found, we show numerically that the waves that are propagated throughout the system can be dissipated, amplified, or remain stable depending on the network parameters. These results are not only in agreement with the analytical predictions, but also with the existing experimental results in the literature.
Keywords:  microtubule      dissipation and amplification      hybrid behavior      solitary wave solutions  
Received:  06 January 2023      Revised:  22 February 2023      Accepted manuscript online:  15 March 2023
PACS:  05.45.Yv (Solitons)  
  05.45.-a (Nonlinear dynamics and chaos)  
  63.20.Pw (Localized modes)  
Corresponding Authors:  Guy Roger Deffo     E-mail:  guyrdeffo@yahoo.fr

Cite this article: 

Sedric Ndoungalah, Guy Roger Deffo, Arnaud Djine, and Serge Bruno Yamgoué Dissipation and amplification management in an electrical model of microtubules: Hybrid behavior network 2023 Chin. Phys. B 32 110505

[1] Hie B L, Yang K K and Kim P S 2022 Cell Systems 13 274
[2] Sirbu B, Couch F and Cortez D 2012 Nat. Protoc. 7 594
[3] Priel A, Tuszynski J A and Woolf N J 2010 J. Biol. Phys. 36 3
[4] Tuszynski J A, Brown J A, et al. 2005 Math. Comput. Model. 41 1055
[5] Havelka D, Cifra M, et al. 2011 J. Theor. Biol. 286 31
[6] Kucera O and Havelka D 2012 BioSystems 109 346
[7] Priel A, Ramos A J, Tuszynski J A and Cantiello H F 2006 Biophys. J. 90 4639
[8] Minoura I and Muto E 2006 Biophys. J. 90 3739
[9] Freedman H, Rezania V, Priel A, et al. 2010 Phys. Rev. E 81 051912
[10] Havelka D, Cifra M and Kucera O 2014 Appl. Phys. Lett. 104 243702
[11] Zdravkovic S, Bugay A N, Aru G F and Maluckov A 2014 Chaos 24 023139
[12] Zdravkovic S, Sataric M V, Maluckov A and Balaz B 2014 Appl. Math. Comput. 237 227
[13] Tuszynski J A, Portet S, Luxford J M and Cantiello H F 2004 Biophys. J. 86 1890
[14] Priel A and Tuszynski J A 2008 Europhys. Lett. 83 68004
[15] Ilic D I, Sataric M V and Ralevic N 2009 Chin. Phys. Lett. 26 073101
[16] Sataric M V, Ilic D I, et al. 2009 Eur. Biophys. J. 38 637
[17] Sataric M V, Sekulic D and Zivanov M 2010 J. Comput. Theor. Nanosci. 7 2281
[18] Sekulic D L, Sataric B M, Tuszynski J A and Sataric M V 2011 Eur. Phys. J. E 34 49
[19] Sataric M V, Sekulica D L, Sataric B M and Zdravkovic S 1015 Prog. Biophys. Mol. Biol. 119 162
[20] Ndjomatchoua F T, Tchawoua C, et al. 2016 Chaos 26 053111
[21] Ghomsi P G, Berinyoh J T T and Kakmeni F M M 2018 Chaos 28 023106
[22] Ndzana F II and Mohamadou A 2019 Chaos 29 013116
[23] Mvogo A, Ndzana F II and Kofane T C 2019 Wave Motion 84 46
[24] Priel A, Ramos A J, Tuszynski J A and Cantiello H F 2008 J. Biol Phys. 34 475
[25] Deffo G R, Yamgoué S B and Pelap F B 2021 Chaos Soliton Fract. 152 111397
[26] Deffo G R, Yamgoué S B and Pelap F B 2018 Phys. Rev. E 98 062201
[27] Essimbi B Z and Jäger D 2005 Current Applied Physics 5 567
[28] Jaeger D, Kalinowski D, et al. 2007 Microw. Opt. Technol. Lett. 49 2907
[29] Fonkoua S A T, Ngounou S M, Deffo G R, et al. 2020 Chin. Phys. B 29 030501
[30] Pelab F B, Kofané T C, Flytzanis N and Remoissenet M 2001 J. Phys. Soc. Jpn 70 2568
[31] Kengne E, Lakhssassi A and Liu M M 2015 Phys. Rev. E 91 062915
[32] Kengne E 2021 Eur. Phys. J. Plus 136 266
[33] Okaly J B, Ndzana II F, Woulaché R L and Kofané TC 2019 Eur. Phys. J. Plus 134 598
[34] Giannini J A and Joseph R I 1990 IEEE J. Quantum Electron 26 2109
[35] Marquié R, Bilbault J M and Remoissenet M 1995 Physica D 87 371
[36] Demiray H 2003 Appl. Math. Comput. 145 179
[37] Wen X Y and Yan Z 2018 J. Math. Phys. 59 073511
[38] Wen X Y, Yan Z and Malomed B A 2016 Chaos 26 123110
[39] Kengne E and Lakhssassi A 2022 Chaos Soliton Fract. 160 112239
[40] Wen X Y and Yan Z 2015 Chaos 25 123115
[41] Cui W N, Zhu Y Y and Li H X 2010 Chin. Phys. Lett. 27 114101
[42] Xu Q and Qiang T 2009 Chin. Phys. Lett. 26 070501
[43] Xu Q and Qiang T 2010 Chin. Phys. Lett. 27 020505
[44] Xu Q and Qiang T 2009 Chin. Phys. Lett. 26 040501
[45] Huang L F, Li Y L, Ni M Y, et al. 2009 Acta Phys. Sin. 58 306 (in Chinese)
[46] Xie Z D, Xia C, et al. 2019 Chin. Phys. B 28 077501
[47] Xiang Z, Tang C and Yan L 2019 Chin. Phys. B 28 048701
[48] Yamgoué, Deffo G R, Tala-Tebue E and Pelap F B 2018 Chin. Phys. B 27 126303
[49] Yamgoué, Deffo G R, Tala-Tebue E and Pelap F B 2018 Chin. Phys. B 27 096301
[50] Su W, Xie J, Wu T, et al. 2018 Chin. Phys. B 27 097501
[1] Kinesin-microtubule interaction reveals the mechanism of kinesin-1 for discriminating the binding site on microtubule
Yi-Zhao Geng(耿轶钊), Li-Ai Lu(鲁丽爱), Ning Jia(贾宁), Bing-Bing Zhang(张冰冰), and Qing Ji(纪青). Chin. Phys. B, 2023, 32(10): 108701.
[2] Regulation of microtubule array inits self-organized dense active crowds
Xin-Chen Jiang(蒋新晨), Yu-Qiang Ma(马余强), Xiaqing Shi(施夏清). Chin. Phys. B, 2020, 29(7): 078201.
[3] A primary model of decoherence in neuronal microtubules based on the interaction Hamiltonian between microtubules and plasmon in neurons
Zuoxian Xiang(向左鲜), Chuanxiang Tang(唐传祥), Lixin Yan(颜立新). Chin. Phys. B, 2019, 28(4): 048701.
[4] Exact transverse solitary and periodic wave solutions in a coupled nonlinear inductor-capacitor network
Serge Bruno Yamgoué, Guy Roger Deffo, Eric Tala-Tebue, François Beceau Pelap. Chin. Phys. B, 2018, 27(9): 096301.
[5] Propagation of kink-antikink pair along microtubules as a control mechanism for polymerization and depolymerization processes
L. Kavitha, A. Muniyappan, S. Zdravković, M. V. Satarić, A. Marlewski, S. Dhamayanthi, D. Gopi. Chin. Phys. B, 2014, 23(9): 098703.
[6] Employment of Jacobian elliptic functions for solving problems in nonlinear dynamics of microtubules
Slobodan Zeković, Annamalai Muniyappan, Slobodan Zdravković, Louis Kavitha. Chin. Phys. B, 2014, 23(2): 020504.
[7] A novel (G’/G)-expansion method and its application to the Boussinesq equation
Md. Nur Alam, Md. Ali Akbar, Syed Tauseef Mohyud-Din. Chin. Phys. B, 2014, 23(2): 020203.
[8] Combined periodic wave and solitary wave solutions in two-component Bose–Einstein condensates
Yao Shu-Fang (姚淑芳), Li Qiu-Yan(李秋艳), and Li Zai-Dong(李再东) . Chin. Phys. B, 2011, 20(11): 110307.
[9] Some exact solutions to the inhomogeneous higher-order nonlinear Schr?dinger equation by a direct method
Zhang Huan-Ping(张焕萍), Li Biao(李彪), and Chen Yong(陈勇). Chin. Phys. B, 2010, 19(6): 060302.
[10] Discrete doubly periodic and solitary wave solutions for the semi-discrete coupled mKdV equations
Wu Xiao-Fei(吴晓飞), Zhu Jia-Min(朱加民), and Ma Zheng-Yi(马正义). Chin. Phys. B, 2007, 16(8): 2159-2166.
[11] New exact solitary wave solutions to generalized mKdV equation and generalized Zakharov--Kuzentsov equation
Taogetusang (套格图桑), Sirendaoreji. Chin. Phys. B, 2006, 15(6): 1143-1148.
[12] Applications of F-expansion method to the coupled KdV system
Li Bao-An (李保安), Wang Ming-Liang (王明亮). Chin. Phys. B, 2005, 14(9): 1698-1706.
[13] A pseudo-spin model for the wall of cytoskeletal microtubule
Chen Ying (陈莹), Qiu Xi-Jun (邱锡钧), Li Ru-Xin (李儒新). Chin. Phys. B, 2005, 14(2): 427-432.
[14] Extended Jacobi elliptic function method and its applications to (2+1)﹣dimensional dispersive long-wave equation
Chen Yong (陈勇), Li Biao(李彪), and Zhang Hong-Qing. Chin. Phys. B, 2004, 13(1): 5-10.
[15] The periodic wave solutions for the generalized Nizhnik-Novikov-Veselov equation
Zhang Jin-Liang (张金良), Ren Dong-Feng (任东锋), Wang Ming-Liang (王明亮), Wang Yue-Ming (王跃明), Fang Zong-De (方宗德). Chin. Phys. B, 2003, 12(8): 825-830.
No Suggested Reading articles found!