|
|
Fast and perfect state transfer in superconducting circuit with tunable coupler |
Chi Zhang(张驰)1,2,†, Tian-Le Wang(王天乐)1,2,†, Ze-An Zhao(赵泽安)1,2, Xiao-Yan Yang(杨小燕)1,2, Liang-Liang Guo(郭亮亮)1,2, Zhi-Long Jia(贾志龙)1,2, Peng Duan(段鹏)1,2, and Guo-Ping Guo(郭国平)1,2,3,‡ |
1 CAS Key Laboratory of Quantum Information, University of Science and Technology of China, Hefei 230026, China; 2 CAS Center for Excellence and Synergetic Innovation Center in Quantum Information and Quantum Physics, University of Science and Technology of China, Hefei 230026, China; 3 Origin Quantum Computing Company Limited, Hefei 230026, China |
|
|
Abstract In quantum computation and quantum information processing, the manipulation and engineering of quantum systems to suit certain purposes are an ongoing task. One such example is quantum state transfer (QST), an essential requirement for both quantum communication and large-scale quantum computation. Here we engineer a chain of four superconducting qubits with tunable couplers to realize the perfect state transfer (PST) protocol originally proposed in quantum spin networks and successfully demonstrate the efficient transfer of an arbitrary single-qubit state from one end of the chain to the other, achieving a high fidelity of 0.986 in just 25 ns. This demonstrated QST is readily to extend to larger chain and multi-node configurations, thus serving as a desirable tool for scalable quantum information processing.
|
Received: 01 August 2023
Revised: 23 August 2023
Accepted manuscript online: 29 August 2023
|
PACS:
|
03.67.-a
|
(Quantum information)
|
|
03.67.Ac
|
(Quantum algorithms, protocols, and simulations)
|
|
Fund: Project supported by the National Natural Science Foundation of China (Grant Nos. 12034018 and 11625419). This work is partially carried out at the USTC Center for Micro and Nanoscale Research and Fabrication. |
Corresponding Authors:
Guo-Ping Guo
E-mail: gpguo@ustc.edu.cn
|
Cite this article:
Chi Zhang(张驰), Tian-Le Wang(王天乐), Ze-An Zhao(赵泽安), Xiao-Yan Yang(杨小燕), Liang-Liang Guo(郭亮亮), Zhi-Long Jia(贾志龙), Peng Duan(段鹏), and Guo-Ping Guo(郭国平) Fast and perfect state transfer in superconducting circuit with tunable coupler 2023 Chin. Phys. B 32 110305
|
[1] Preskill J 2018 Quantum 2 79 [2] National Academies of Sciences E and Medicine 2019 Quantum Computing:Progress and Prospects (Washington, DC:The National Academies Press) pp. 12-15 [3] He K, Geng X, Huang R, Liu J and Chen W 2021 Chin. Phys. B 30 080304 [4] Arute F, Arya K, Babbush R, et al. 2019 Nature 574 505 [5] Wu Y, Bao W S, Cao S, et al. 2021 Phys. Rev. Lett. 127 180501 [6] DiVincenzo D P 2000 Fortschritte der Physik 48 771 [7] Cirac J I, Zoller P, Kimble H J and Mabuchi H 1997 Phys. Rev. Lett. 78 3221 [8] Bose S 2003 Phys. Rev. Lett. 91 207901 [9] Romito A, Fazio R and Bruder C 2005 Phys. Rev. B 71 100501 [10] Zhong Y, Chang H S, Bienfait A, Dumur É, Chou M H, Conner C R, Grebel J, Povey R G, Yan H, Schuster D I and Cleland A N 2021 Nature 590 571 [11] Krinner S, Lacroix N, Remm A, Di Paolo A, Genois E, Leroux C, Hellings C, Lazar S, Swiadek F, Herrmann J, Norris G J, Andersen C K, Müller M, Blais A, Eichler C and Wallraff A 2022 Nature 605 669 [12] Zhao Y, Ye Y, Huang H L, et al. 2022 Phys. Rev. Lett. 129 030501 [13] Kim Y, Eddins A, Anand S, Wei K X, van den Berg E, Rosenblatt S, Nayfeh H, Wu Y, Zaletel M, Temme K and Kandala A 2023 Nature 618 500 [14] Morvan A, Villalonga B, Mi X, et al. 2023 arXiv:2304.11119 [15] Kurpiers P, Magnard P, Walter T, Royer B, Pechal M, Heinsoo J, Salathé Y, Akin A, Storz S, Besse J C, Gasparinetti S, Blais A and Wallraff A 2018 Nature 558 264 [16] Axline C J, Burkhart L D, Pfaff W, Zhang M, Chou K, Campagne-Ibarcq P, Reinhold P, Frunzio L, Girvin S M, Jiang L, Devoret M H and Schoelkopf R J 2018 Nat. Phys. 14 705 [17] Bienfait A, Satzinger K J, Zhong Y P, Chang H S, Chou M H, Conner C R, Dumur É, Grebel J, Peairs G A, Povey R G and Cleland A N 2019 Science 364 368 [18] Christandl M, Datta N, Ekert A and Landahl A J 2004 Phys. Rev. Lett. 92 187902 [19] Kandel Y P, Qiao H, Fallahi S, Gardner G C, Manfra M J and Nichol J M 2021 Nat. Commun. 12 2156 [20] Zhang J, Long G L, Zhang W, Deng Z, Liu W and Lu Z 2005 Phys. Rev. A 72 012331 [21] Chapman R J, Santandrea M, Huang Z, Corrielli G, Crespi A, Yung M H, Osellame R and Peruzzo A 2016 Nat. Commun. 7 11339 [22] Li X, Ma Y, Han J, Chen T, Xu Y, Cai W, Wang H, Song Y, Xue Z Y, Yin Z Q and Sun L 2018 Phys. Rev. Appl. 10 054009 [23] Yan F, Krantz P, Sung Y, Kjaergaard M, Campbell D L, Orlando T P, Gustavsson S and Oliver W D 2018 Phys. Rev. Appl. 10 054062 [24] Sete E A, Chen A Q, Manenti R, Kulshreshtha S and Poletto S 2021 Phys. Rev. Appl. 15 064063 [25] Goto H 2022 Phys. Rev. Appl. 18 034038 [26] Sung Y, Ding L, Braumüller J, Vepsäläinen A, Kannan B, Kjaergaard M, Greene A, Samach G O, McNally C, Kim D, Melville A, Niedzielski B M, Schwartz M E, Yoder J L, Orlando T P, Gustavsson S and Oliver W D 2021 Phys. Rev. X 11 021058 [27] Huang C, Wang T, Wu F, Ding D, Ye Q, Kong L, Zhang F, Ni X, Song Z, Shi Y, Zhao H H, Deng C and Chen J 2023 Phys. Rev. Lett. 130 070601 [28] Jazzbin et al. geatpy:The genetic and evolutionary algorithm toolbox with high performance in python [29] Zhang C, Wang T L, Guo L L, Yang X Y, Yang X X, Duan P, Jia Z L, Kong W C and Guo G P 2023 Appl. Phys. Lett. 122 024001 [30] Chow J M, Gambetta J M, Tornberg L, Koch J, Bishop L S, Houck A A, Johnson B R, Frunzio L, Girvin S M and Schoelkopf R J 2009 Phys. Rev. Lett. 102 090502 [31] Korotkov A N 2013 arXiv:1309.6405 [32] Yang X X, Guo L L, Zhang H F, Du L, Zhang C, Tao H R, Chen Y, Duan P, Jia Z L, Kong W C and Guo G P 2023 Phys. Rev. Appl. 19 044076 [33] Mei F, Chen G, Tian L, Zhu S L and Jia S 2018 Phys. Rev. A 98 012331 [34] Liu X Q, Liu J and Xue Z Y 2023 JETP Lett. 117 859 [35] Wang C, Gu X, Chen S and Liu Y X 2023 arXiv:2305.14529 [36] Humphreys P C, Kalb N, Morits J P J, Schouten R N, Vermeulen R F L, Twitchen D J, Markham M and Hanson R 2018 Nature 558 268 |
No Suggested Reading articles found! |
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
Altmetric
|
blogs
Facebook pages
Wikipedia page
Google+ users
|
Online attention
Altmetric calculates a score based on the online attention an article receives. Each coloured thread in the circle represents a different type of online attention. The number in the centre is the Altmetric score. Social media and mainstream news media are the main sources that calculate the score. Reference managers such as Mendeley are also tracked but do not contribute to the score. Older articles often score higher because they have had more time to get noticed. To account for this, Altmetric has included the context data for other articles of a similar age.
View more on Altmetrics
|
|
|