Please wait a minute...
Chin. Phys. B, 2023, Vol. 32(11): 110305    DOI: 10.1088/1674-1056/acf496
RAPID COMMUNICATION Prev   Next  

Fast and perfect state transfer in superconducting circuit with tunable coupler

Chi Zhang(张驰)1,2,†, Tian-Le Wang(王天乐)1,2,†, Ze-An Zhao(赵泽安)1,2, Xiao-Yan Yang(杨小燕)1,2, Liang-Liang Guo(郭亮亮)1,2, Zhi-Long Jia(贾志龙)1,2, Peng Duan(段鹏)1,2, and Guo-Ping Guo(郭国平)1,2,3,‡
1 CAS Key Laboratory of Quantum Information, University of Science and Technology of China, Hefei 230026, China;
2 CAS Center for Excellence and Synergetic Innovation Center in Quantum Information and Quantum Physics, University of Science and Technology of China, Hefei 230026, China;
3 Origin Quantum Computing Company Limited, Hefei 230026, China
Abstract  In quantum computation and quantum information processing, the manipulation and engineering of quantum systems to suit certain purposes are an ongoing task. One such example is quantum state transfer (QST), an essential requirement for both quantum communication and large-scale quantum computation. Here we engineer a chain of four superconducting qubits with tunable couplers to realize the perfect state transfer (PST) protocol originally proposed in quantum spin networks and successfully demonstrate the efficient transfer of an arbitrary single-qubit state from one end of the chain to the other, achieving a high fidelity of 0.986 in just 25 ns. This demonstrated QST is readily to extend to larger chain and multi-node configurations, thus serving as a desirable tool for scalable quantum information processing.
Keywords:  quantum state transfer      superconducting circuit      tunable coupler  
Received:  01 August 2023      Revised:  23 August 2023      Accepted manuscript online:  29 August 2023
PACS:  03.67.-a (Quantum information)  
  03.67.Ac (Quantum algorithms, protocols, and simulations)  
Fund: Project supported by the National Natural Science Foundation of China (Grant Nos. 12034018 and 11625419). This work is partially carried out at the USTC Center for Micro and Nanoscale Research and Fabrication.
Corresponding Authors:  Guo-Ping Guo     E-mail:  gpguo@ustc.edu.cn

Cite this article: 

Chi Zhang(张驰), Tian-Le Wang(王天乐), Ze-An Zhao(赵泽安), Xiao-Yan Yang(杨小燕), Liang-Liang Guo(郭亮亮), Zhi-Long Jia(贾志龙), Peng Duan(段鹏), and Guo-Ping Guo(郭国平) Fast and perfect state transfer in superconducting circuit with tunable coupler 2023 Chin. Phys. B 32 110305

[1] Preskill J 2018 Quantum 2 79
[2] National Academies of Sciences E and Medicine 2019 Quantum Computing:Progress and Prospects (Washington, DC:The National Academies Press) pp. 12-15
[3] He K, Geng X, Huang R, Liu J and Chen W 2021 Chin. Phys. B 30 080304
[4] Arute F, Arya K, Babbush R, et al. 2019 Nature 574 505
[5] Wu Y, Bao W S, Cao S, et al. 2021 Phys. Rev. Lett. 127 180501
[6] DiVincenzo D P 2000 Fortschritte der Physik 48 771
[7] Cirac J I, Zoller P, Kimble H J and Mabuchi H 1997 Phys. Rev. Lett. 78 3221
[8] Bose S 2003 Phys. Rev. Lett. 91 207901
[9] Romito A, Fazio R and Bruder C 2005 Phys. Rev. B 71 100501
[10] Zhong Y, Chang H S, Bienfait A, Dumur É, Chou M H, Conner C R, Grebel J, Povey R G, Yan H, Schuster D I and Cleland A N 2021 Nature 590 571
[11] Krinner S, Lacroix N, Remm A, Di Paolo A, Genois E, Leroux C, Hellings C, Lazar S, Swiadek F, Herrmann J, Norris G J, Andersen C K, Müller M, Blais A, Eichler C and Wallraff A 2022 Nature 605 669
[12] Zhao Y, Ye Y, Huang H L, et al. 2022 Phys. Rev. Lett. 129 030501
[13] Kim Y, Eddins A, Anand S, Wei K X, van den Berg E, Rosenblatt S, Nayfeh H, Wu Y, Zaletel M, Temme K and Kandala A 2023 Nature 618 500
[14] Morvan A, Villalonga B, Mi X, et al. 2023 arXiv:2304.11119
[15] Kurpiers P, Magnard P, Walter T, Royer B, Pechal M, Heinsoo J, Salathé Y, Akin A, Storz S, Besse J C, Gasparinetti S, Blais A and Wallraff A 2018 Nature 558 264
[16] Axline C J, Burkhart L D, Pfaff W, Zhang M, Chou K, Campagne-Ibarcq P, Reinhold P, Frunzio L, Girvin S M, Jiang L, Devoret M H and Schoelkopf R J 2018 Nat. Phys. 14 705
[17] Bienfait A, Satzinger K J, Zhong Y P, Chang H S, Chou M H, Conner C R, Dumur É, Grebel J, Peairs G A, Povey R G and Cleland A N 2019 Science 364 368
[18] Christandl M, Datta N, Ekert A and Landahl A J 2004 Phys. Rev. Lett. 92 187902
[19] Kandel Y P, Qiao H, Fallahi S, Gardner G C, Manfra M J and Nichol J M 2021 Nat. Commun. 12 2156
[20] Zhang J, Long G L, Zhang W, Deng Z, Liu W and Lu Z 2005 Phys. Rev. A 72 012331
[21] Chapman R J, Santandrea M, Huang Z, Corrielli G, Crespi A, Yung M H, Osellame R and Peruzzo A 2016 Nat. Commun. 7 11339
[22] Li X, Ma Y, Han J, Chen T, Xu Y, Cai W, Wang H, Song Y, Xue Z Y, Yin Z Q and Sun L 2018 Phys. Rev. Appl. 10 054009
[23] Yan F, Krantz P, Sung Y, Kjaergaard M, Campbell D L, Orlando T P, Gustavsson S and Oliver W D 2018 Phys. Rev. Appl. 10 054062
[24] Sete E A, Chen A Q, Manenti R, Kulshreshtha S and Poletto S 2021 Phys. Rev. Appl. 15 064063
[25] Goto H 2022 Phys. Rev. Appl. 18 034038
[26] Sung Y, Ding L, Braumüller J, Vepsäläinen A, Kannan B, Kjaergaard M, Greene A, Samach G O, McNally C, Kim D, Melville A, Niedzielski B M, Schwartz M E, Yoder J L, Orlando T P, Gustavsson S and Oliver W D 2021 Phys. Rev. X 11 021058
[27] Huang C, Wang T, Wu F, Ding D, Ye Q, Kong L, Zhang F, Ni X, Song Z, Shi Y, Zhao H H, Deng C and Chen J 2023 Phys. Rev. Lett. 130 070601
[28] Jazzbin et al. geatpy:The genetic and evolutionary algorithm toolbox with high performance in python
[29] Zhang C, Wang T L, Guo L L, Yang X Y, Yang X X, Duan P, Jia Z L, Kong W C and Guo G P 2023 Appl. Phys. Lett. 122 024001
[30] Chow J M, Gambetta J M, Tornberg L, Koch J, Bishop L S, Houck A A, Johnson B R, Frunzio L, Girvin S M and Schoelkopf R J 2009 Phys. Rev. Lett. 102 090502
[31] Korotkov A N 2013 arXiv:1309.6405
[32] Yang X X, Guo L L, Zhang H F, Du L, Zhang C, Tao H R, Chen Y, Duan P, Jia Z L, Kong W C and Guo G P 2023 Phys. Rev. Appl. 19 044076
[33] Mei F, Chen G, Tian L, Zhu S L and Jia S 2018 Phys. Rev. A 98 012331
[34] Liu X Q, Liu J and Xue Z Y 2023 JETP Lett. 117 859
[35] Wang C, Gu X, Chen S and Liu Y X 2023 arXiv:2305.14529
[36] Humphreys P C, Kalb N, Morits J P J, Schouten R N, Vermeulen R F L, Twitchen D J, Markham M and Hanson R 2018 Nature 558 268
[1] State transfer and entanglement between two- and four-level atoms in a cavity
Si-Wu Li(李思吾), Tianfeng Feng(冯田峰), Xiao-Long Hu(胡骁龙), and Xiaoqi Zhou(周晓祺). Chin. Phys. B, 2023, 32(10): 104214.
[2] Hard-core Hall tube in superconducting circuits
Xin Guan(关欣), Gang Chen(陈刚), Jing Pan(潘婧), and Zhi-Guo Gui(桂志国). Chin. Phys. B, 2022, 31(8): 080302.
[3] Characterization of topological phase of superlattices in superconducting circuits
Jianfei Chen(陈健菲), Chaohua Wu(吴超华), Jingtao Fan(樊景涛), and Gang Chen(陈刚). Chin. Phys. B, 2022, 31(8): 088501.
[4] Quantum simulation of lattice gauge theories on superconducting circuits: Quantum phase transition and quench dynamics
Zi-Yong Ge(葛自勇), Rui-Zhen Huang(黄瑞珍), Zi-Yang Meng(孟子杨), and Heng Fan(范桁). Chin. Phys. B, 2022, 31(2): 020304.
[5] Controllable microwave frequency comb generation in a tunable superconducting coplanar-waveguide resonator
Shuai-Peng Wang(王帅鹏), Zhen Chen(陈臻), and Tiefu Li(李铁夫). Chin. Phys. B, 2021, 30(4): 048501.
[6] Speeding up generation of photon Fock state in a superconducting circuit via counterdiabatic driving
Xin-Ping Dong(董新平), Xiao-Jing Lu(路晓静), Ming Li(李明), Zheng-Yin Zhao(赵正印), and Zhi-Bo Feng(冯志波). Chin. Phys. B, 2021, 30(4): 044214.
[7] Realization of adiabatic and diabatic CZ gates in superconducting qubits coupled with a tunable coupler
Huikai Xu(徐晖凯), Weiyang Liu(刘伟洋), Zhiyuan Li(李志远), Jiaxiu Han(韩佳秀), Jingning Zhang(张静宁), Kehuan Linghu(令狐克寰), Yongchao Li(李永超), Mo Chen(陈墨), Zhen Yang(杨真), Junhua Wang(王骏华), Teng Ma(马腾), Guangming Xue(薛光明), Yirong Jin(金贻荣), and Haifeng Yu(于海峰). Chin. Phys. B, 2021, 30(4): 044212.
[8] Enhancement of multiatom non-classical correlations and quantum state transfer in atom-cavity-fiber system
Qi-Liang He(贺启亮), Jian Sun(孙剑), Xiao-Shu Song(宋晓书), and Yong-Jun Xiao(肖勇军). Chin. Phys. B, 2021, 30(1): 010305.
[9] Fast achievement of quantum state transfer and distributed quantum entanglement by dressed states
Liang Tian(田亮), Li-Li Sun(孙立莉), Xiao-Yu Zhu(朱小瑜), Xue-Ke Song(宋学科), Lei-Lei Yan(闫磊磊), Er-Jun Liang(梁二军), Shi-Lei Su(苏石磊), Mang Feng(冯芒). Chin. Phys. B, 2020, 29(5): 050306.
[10] Observation of geometric phase in a dispersively coupled resonator-qutrit system
Libo Zhang(张礼博), Chao Song(宋超), H Wang(王浩华), Shi-Biao Zheng(郑仕标). Chin. Phys. B, 2018, 27(7): 070303.
[11] Quantum state transfer via a hybrid solid-optomechanical interface
Pei Pei(裴培), He-Fei Huang(黄鹤飞), Yan-Qing Guo(郭彦青), Xing-Yuan Zhang(张兴远), Jia-Feng Dai(戴佳峰). Chin. Phys. B, 2018, 27(2): 024203.
[12] Optomechanical state transfer between two distant membranes in the presence of non-Markovian environments
Jiong Cheng(程泂), Xian-Ting Liang(梁先庭), Wen-Zhao Zhang(张闻钊), Xiangmei Duan(段香梅). Chin. Phys. B, 2018, 27(12): 120302.
[13] Speeding up transmissions of unknown quantum information along Ising-type quantum channels
W J Guo(郭伟杰), L F Wei(韦联福). Chin. Phys. B, 2017, 26(1): 010303.
[14] Quantum information transfer between topological and conventional charge qubits
Jun Li(栗军) and Yan Zou(邹艳). Chin. Phys. B, 2016, 25(2): 027302.
[15] Design of a gap tunable flux qubit with FastHenry
Naheed Akhtar, Yarui Zheng(郑亚锐), Mudassar Nazir, Yulin Wu(吴玉林), Hui Deng(邓辉), Dongning Zheng(郑东宁), Xiaobo Zhu(朱晓波). Chin. Phys. B, 2016, 25(12): 120305.
No Suggested Reading articles found!