Please wait a minute...
Chin. Phys. B, 2023, Vol. 32(11): 110202    DOI: 10.1088/1674-1056/acedf5
GENERAL Prev   Next  

Finite-time H filtering for Markov jump systems with uniform quantization

Jingjing Dong(董敬敬)1, Xiaofeng Ma(马晓峰)1, Xiaoqing Zhang(张晓庆)1, Jianping Zhou(周建平)1,†, and Zhen Wang(王震)2
1 School of Computer Science & Technology, Anhui University of Technology, Ma'anshan 243032, China;
2 College of Mathematics & Systems Science, Shandong University of Science and Technology, Qingdao 266590, China
Abstract  This paper is concerned with finite-time H filtering for Markov jump systems with uniform quantization. The objective is to design quantized mode-dependent filters to ensure that the filtering error system is not only mean-square finite-time bounded but also has a prescribed finite-time H performance. First, the case where the switching modes of the filter align with those of the MJS is considered. A numerically tractable filter design approach is proposed utilizing a mode-dependent Lyapunov function, Schur's complement, and Dynkin's formula. Then, the study is extended to a scenario where the switching modes of the filter can differ from those of the MJS. To address this situation, a mode-mismatched filter design approach is developed by leveraging a hidden Markov model to describe the asynchronous mode switching and the double expectation formula. Finally, a spring system model subject to a Markov chain is employed to validate the effectiveness of the quantized filter design approaches.
Keywords:  Markov jump system      filter design      finite-time H performance      uniform quantization  
Received:  31 May 2023      Revised:  24 July 2023      Accepted manuscript online:  08 August 2023
PACS:  02.30.Yy (Control theory)  
  02.50.Ga (Markov processes)  
  87.19.lr (Control theory and feedback)  
Fund: Project supported by the Natural Science Foundation of the Anhui Higher Education Institutions (Grant Nos. KJ2020A0248 and 2022AH050310).
Corresponding Authors:  Jianping Zhou     E-mail:  jpzhou0@gmail.com

Cite this article: 

Jingjing Dong(董敬敬), Xiaofeng Ma(马晓峰), Xiaoqing Zhang(张晓庆), Jianping Zhou(周建平), and Zhen Wang(王震) Finite-time H filtering for Markov jump systems with uniform quantization 2023 Chin. Phys. B 32 110202

[1] Costa O L V, Fragoso M D and Todorov M G 2013 Continuous-Time Markov Jump Linear Systems (New York:Springer Science &$ Business Media)
[2] Krasovskii N N and Lidskii E A 1961 Automat. Remote Control 22 1021
[3] Rishel R 1975 SIAM J. Control 13 338
[4] Costa E F and do Val J B R 2001 Syst. Control Lett. 44 135
[5] Li S Y and Lian J 2021 IEEE Trans. Syst., Man, Cybern., Syst. 51 6681
[6] Shen H, Wu J C, Xia J W and Wang Z 2021 Chin. Phys. B 30 060203
[7] Zhang X, Wang H, Stojanovic V, Cheng P, He S P, Luan X L and Liu F 2022 IEEE Trans. Fuzzy Syst. 30 2487
[8] Tai W P, Li X L, Zhou J P and Arik S 2023 Neural Netw. 161 55
[9] Yao L, Wang Z, Huang X, Li Y X, Ma Q and Shen H 2023 IEEE Trans. Neural Netw. Learn. Syst. 34 909
[10] Amato F, Ariola M and Dorato P 2001 Automatica 37 1459
[11] Song J S and Chang X H 2022 IEEE Trans. Circuits Syst. II, Exp. Briefs 69 4369
[12] Wu Z T, Jiang B P and Kao Y G 2019 IET Control Theory Appl. 13 702
[13] He Q G, Shi Z W, Wu D L, Fan S S, Zhang Z K and Liu D S 2022 Int. J. Control, Autom. Syst. 20 2273
[14] Saravanan S, Syed Ali M, Alsulami H and Alhodaly M S 2020 Int. J. Syst. Sci. 51 368
[15] Zhang L X, Gao H J and Kaynak O 2013 IEEE Trans. Ind. Informat. 9 403
[16] Zhou J P, Dong J J and Xu S Y 2023 IEEE Trans. Fuzzy Syst. in press doi:10.1109/TFUZZ.2023.3271348
[17] Mahmoud M S and Xia Y Q 2019 Networked Control Systems:Cloud Control and Secure Control (UK:Butterworth-Heinemann)
[18] Rathinasamy S, Murugesan S, Alzahrani F and Ren Y 2019 Circuits, Syst. Signal Process. 38 3971
[19] Zhu Y C, Song X N, Wang M and Lu J W 2020 Int. J. Control, Autom. Syst. 18 450
[20] Zhao Y, Wu B Y and Zhang W H 2023 Int. J. Robust Nonlinear Control in press doi:10.1002/rnc.6704
[21] Sakthivel R, Kwon O M, Park M J and Sakthivel R 2023 IEEE Trans. Syst., Man, Cybern., Syst. 53 3042
[22] Xiang Z R, Sun Y N and Mahmoud M S 2012 Commun. Nonlinear. Sci. Numer. Simul. 17 1766
[23] Chen X, Yin L Y, Liu Y T and Liu H 2019 Chin. Phys. B 28 090701
[24] Fang M, Shi P and Dong S L 2021 IEEE Trans. Syst., Man, Cybern., Syst. 51 2916
[25] Sheng L, Wang Z D, Wang W B and Alsaadi F E 2017 IEEE Trans. Syst., Man, Cybern., Syst. 47 1181
[26] Wang F, Wang Z D, Liang J L and Liu X H 2018 IEEE Trans. Circuits Syst. I, Reg. Papers 65 2992
[27] Zhang X, He S P, Stojanovic V, Luan X L and Liu F 2021 Sci. China Inf. Sci. 64 152206
[28] He S P and Liu F 2012 IEEE Trans. Fuzzy Syst. 20 605
[29] Mao X R and Yuan C G 2006 Stochastic Differential Equations with Markovian Switching (London:Imperial College Press)
[30] Bickell P J and Doksum K A 2016 Mathematical Statistics:Basic Ideas and Selected Topics, Volumes I-II Package (USA:CRC Press)
[31] Boyd S, El Ghaoui L, Feron E and Balakrishnan V 1994 Linear Matrix Inequalities in System and Control Theory (Philadelphia, PA, USA:SIAM)
[32] Wu X R, Zhang Y C, Zhang T T and Zhang B L 2023 Chin. Phys. B, in press
[33] Duo L, Xiang L Y and Chen G R 2023 Chin. Phys. B 32 060502
[34] Zhuang G M, Su S F, Xia J W and Sun W 2021 IEEE Trans. Cybern. 51 1189
[35] Dong S L, Liu L, Feng G, Liu M Q, Wu Z G and Zheng R H 2022 IEEE Trans. Cybern. 52 9882
[36] Qin X L, Dong J J, Zhou J P and Jiang T P 2023 Commun. Nonlinear. Sci. Numer. Simul. 121 107242
[37] Gao H J and Chen T W 2007 IEEE Trans. Autom. Control 52 2070
[38] Liu S, Wang Z D, Hu J and Wei G L 2020 Int. J. Robust Nonlinear Control 30 7927
[39] Liu Y, Wang Z D, Liu C J, Coombes M and Chen W H 2023 IEEE Trans. Ind. Informat. 19 5830
[40] Li M Y, Liang J L and Qiu J L 2023 IEEE Trans. Circuits Syst. II, Exp. Briefs, in press
[1] Influences of phase shift on superresolution performances of annular filters
Liu Xi-Min (刘锡民), Liu Li-Ren (刘立人), Bai Li-Hua (白丽华). Chin. Phys. B, 2006, 15(4): 708-714.
No Suggested Reading articles found!