CONDENSED MATTER: ELECTRONIC STRUCTURE, ELECTRICAL, MAGNETIC, AND OPTICAL PROPERTIES |
Prev
Next
|
|
|
Unveiling localized electronic properties of ReS2 thin layers at nanoscale using Kelvin force probe microscopy combined with tip-enhanced Raman spectroscopy |
Yu Luo(罗宇)1, Weitao Su(苏伟涛)1,†, Juanjuan Zhang(张娟娟)2,‡, Fei Chen(陈飞)3, Ke Wu(武可)1, Yijie Zeng(曾宜杰)1, and Hongwei Lu(卢红伟)1 |
1 School of Sciences, Hangzhou Dianzi University, Hangzhou 310018, China; 2 Hunan Petrochemical Vocational Technology College, Yueyang 414011, China; 3 College of Materials and Environmental Engineering, Hangzhou Dianzi University, Hangzhou 310018, China |
|
|
Abstract Electronic properties of two-dimensional (2D) materials can be strongly modulated by localized strain. The typical spatial resolution of conventional Kelvin probe force microscopy (KPFM) is usually limited in a few hundreds of nanometers, and it is difficult to characterize localized electronic properties of 2D materials at nanoscales. Herein, tip-enhanced Raman spectroscopy (TERS) is proposed to combine with KPFM to break this restriction. TERS scan is conducted on ReS2 bubbles deposited on a rough Au thin film to obtain strain distribution by using the Raman peak shift. The localized contact potential difference (CPD) is inversely calculated with a higher spatial resolution by using strain measured by TERS and CPD-strain working curve obtained using conventional KPFM and atomic force microscopy. This method enhances the spatial resolution of CPD measurements and can be potentially used to characterize localized electronic properties of 2D materials.
|
Received: 24 April 2023
Revised: 01 July 2023
Accepted manuscript online: 05 July 2023
|
PACS:
|
78.67.-n
|
(Optical properties of low-dimensional, mesoscopic, and nanoscale materials and structures)
|
|
07.79.Fc
|
(Near-field scanning optical microscopes)
|
|
07.79.Lh
|
(Atomic force microscopes)
|
|
Fund: Project supported by the Zhejiang Provincial Natural Science Foundation of China (Grant No. LZ22A040003) and the National Natural Science Foundation of China (Grant No. 52027809). |
Corresponding Authors:
Weitao Su, Juanjuan Zhang
E-mail: suweitao@hdu.edu.cn;josephy881006@163.com
|
Cite this article:
Yu Luo(罗宇), Weitao Su(苏伟涛), Juanjuan Zhang(张娟娟), Fei Chen(陈飞), Ke Wu(武可), Yijie Zeng(曾宜杰), and Hongwei Lu(卢红伟) Unveiling localized electronic properties of ReS2 thin layers at nanoscale using Kelvin force probe microscopy combined with tip-enhanced Raman spectroscopy 2023 Chin. Phys. B 32 117801
|
[1] Li X and Zhu H 2015 J. Materiomics 1 33 [2] McDonnell S J and Wallace R M 2016 Thin Solid Films 616 482 [3] Cheng Y, Wei X X, Guo D, Wu B, Yu L W, Wang X R and Shi Yi 2015 Chin. Phys. Lett. 32 117801 [4] Li J H, Bing D, Wu Z T, Wu G Q, Bai J, Du R X and Qi Z Q 2020 Chin. Phys. B 29 017802 [5] Friemelt K, Lux-Steiner M C and Bucher E 1993 J. Appl. Phys. 74 5266 [6] Lin D Y, Huang T P, Wu F L, Lin C M, Huang Y S and Tiong K K 2011 Solid State Phenomena 170 135 [7] Wolverson D, Crampin S, Kazemi A S, Ilie A and Bending S J 2014 ACS Nano 8 11154 [8] Xiong Y, Chen H, Zhang D W and Zhou P 2019 Physica Status Solidi RRL 13 1800658 [9] Tongay S, Sahin H, Ko C, Luce A, Fan W, Liu K, Zhou J, Huang Y S, Ho C H, Yan J, Ogletree D F, Aloni S, Ji J, Li S, Li J, Peeters F M and Wu J 2014 Nat. Commun. 5 3252 [10] Chenet D A, Aslan B, Huang P Y, Fan C, van der Zande A M and Heinz T F and Hone J C 2015 Nano Lett. 15 5667 [11] Liu E, Fu Y, Wang Y, Feng Y, Liu H, Wan X, Zhou W, Wang B, Shao L, Ho C H, Huang Y S, Cao Z, Wang L, Li A, Zeng J, Song F, Wang X, Shi Y, Yuan H, Hwang H Y, Cui Y, Miao F and Xing D 2015 Nat. Commun. 6 6991 [12] Corbet C M, McClellan C, Rai A, Sonde S S, Tutuc E and Banerjee S K 2015 ACS Nano 9 363 [13] Liu F, Zheng S, He X, Chaturvedi A, He J, Chow W L, Mion T R, Wang X, Zhou J, Fu Q, Fan H J, Tay B K, Song L, He R H, Kloc C, Ajayan P M and Liu Z 2016 Adv. Funct. Mater. 26 1169 [14] Fujita T, Ito Y, Tan Y, Yamaguchi H, Hojo D, Hirata A, Voiry D, Chhowalla M and Chen M 2014 Nanoscale 6 12458 [15] Huang L, Zheng F, Chen H, Thi Q H, Chen X, Liu H, Lee C S, Deng Q, Zhao J and Ly T H 2021 Commun. Mater. 2 87 [16] Li X, Wang X, Hong J, Liu D, Feng Q, Lei Z, Liu K, Ding F and Xu H 2019 Adv. Funct. Mater. 29 1906385 [17] Glatzel T, Gysin U and Meyer E 2022 Microscopy 71 i165 [18] Loos J 2005 Adv. Mater. 17 1821 [19] Yasutake M, Aoki D and Fujihira M 1996 Thin Solid Films 273 279 [20] Baier R, Leendertz C, Lux-Steiner M C and Sadewasser S 2012 Phys. Rev. B 85 165436 [21] Li F, Qi J, Xu M, Xiao J, Xu Y, Zhang X, Liu S and Zhang Y 2017 Small 13 1603103 [22] Kaushik V, Varandani D and Mehta B R 2015 J. Phys. Chem. C 119 20136 [23] Kumar N, Weckhuysen B M, Wain A J and Pollard A J 2019 Nat. Protocols 14 1169 [24] Richard-Lacroix M, Zhang Y, Dong Z and Deckert V 2017 Chem. Soc. Rev. 46 3922 [25] Pozzi E A, Goubert G, Chiang N, Jiang N, Chapman C T, McAnally M O, Henry A I, Seideman T, Schatz G C, Hersam M C and Duyne R P V 2017 Chem. Rev. 117 4961 [26] Shao J and Su W 2022 Nanoscale 14 17119 [27] Kumar N 2018 Development of tip-enhanced Raman spectroscopy and its application to heterogeneous catalysis research (Utrecht University) [28] Huang T X, Cong X, Wu S S, Lin K Q, Yao X, He Y H, Wu J B, Bao Y F, Huang S C, Wang X, Tan P H and Ren B 2019 Nat. Cimmun. 10 4455 [29] Lee C, Jeong B G, Yun S J, Lee Y H, Lee S M and Jeong M S 2018 ACS Nano 12 9982 [30] Shao J, Chen F, Su W, Kumar N, Zeng Y, Wu L and Lu H W 2022 J. Phys. Chem. Lett. 13 3304 [31] Su W, Kumar N, Shu H, Lancry O and Chaigneau M 2021 J. Phys. Chem. C 125 26883 [32] Tang C, He Z, Chen W, Jia S, Lou J and Voronine D V 2018 Phys. Rev. B 98 041402 [33] Yao Y, Chen F, Fu L, Ding S, Zhao S, Zhang Q, Su W, Ding X and Song K 2020 J. Phys. Chem. C 124 7591 [34] Huang T X, Huang S C, Li M H, Zeng Z C, Wang X and Ren B 2015 Analyt. Bioanalyt. Chem. 407 8177 [35] Sheng S, Wu J B, Cong X, Li W, Gou J, Zhong Q, Cheng P, Tan P H, Chen L and Wu K 2017 Phys. Rev. Lett. 119 196803 [36] Yu W, Wang Z S, Zhao X X, Wang J Y, Herng T S, Ma T, Zhu Z Y, Ding J, Eda G, Pennycook S J, Feng Y P and Loh K P 2020 Adv. Funct. Mater. 30 2003057 [37] Smithe K K H, Krayev A V, Bailey C S, Lee H R, Yalon E, Aslan Ö B, Muñoz Rojo M, Krylyuk S, Taheri P, Davydov A V, Heinz T F and Pop E 2018 ACS Appl. Nano Mater. 1 572 [38] Ghoshal D, Yoshimura A, Gupta T, House A, Basu S, Chen Y W, Wang T M, Yang Y, Shou W J, Hachtel J A, Idrobo J C, Lu T M, Basuray S, Meunier V, Shi S F and Koratkar N 2018 Adv. Funct. Mater. 28 1801286 [39] Lloyd D, Liu X H, Christopher J W, Cantley L, Wadehra A, Kim B L, Goldberg B B, Swan A K and Bunch J S 2019 Nano Lett. 19 7548 [40] Guo Y, Li B, Huang Y, Du S, Sun C, Luo H L, Liu B L, Zhou X J, Yang J L, Li J J and Gu C Z 2020 Nano Res. 13 2072 [41] Yagmurcukardes M, Bacaksiz C, Unsal E, Akbali B, Senger R T and Sahin H 2018 Phys. Rev. B 97 115427 [42] Darlington T P, Krayev A, Venkatesh V, Saxena R, Kysar J W, Borys N J, Jariwala D and Schuck P J 2020 J. Chem. Phys. 153 024702 [43] Long Y, Jiang Z, Gao Z, Li B, Li X, Liu X, Yin J and Guo W 2023 Extreme Mech. Lett. 60 101978 [44] Liu E, Zhu B and Luo J eds 2008 Semiconductor physics (Beijing:Publishing House of Electronics Industry) [45] Min Y M, Wang A Q, Ren X M, Liu L Z and Wu X L 2018 Appl. Surf. Sci. 427 942 [46] Yu Z G, Cai Y and Zhang Y W 2015 Sci. Rep. 5 13783 [47] Zhang S S, Mao N N, Zhang N, Wu J X, Tong L M and Zhang J 2017 ACS Nano 11 10366 [48] Feng Y Q, Zhou W, Wang Y J, Zhou J, Liu E F, Fu Y J, Ni Z H, Wu X L, Yuan H T, Miao F, Wang B G, Wan X G and Xing D Y 2015 Phys. Rev. B 92 054110 [49] Mohamed N B, Shinokita K, Wang X F, Lim H E, Tan D Z, Miyauchi Y and Matsuda K 2018 Appl. Phys. Lett. 113 121112 [50] Ma L, Wang Y C and Zhao Y P 2022 J. Electron. Mater. 51 3919 [51] Kawata S 2007 Tip enhancement (Oxford:Elsevier) [52] Kumar N, Rae A and Roy D 2014 Appl. Phys. Lett. 104 123106 [53] Ichimura T, Fujii S, Verma P, Yano T, Inouye Y and Kawata S 2009 Phys. Rev. Lett. 102 186101 [54] Puretzky A A, Liang L, Li X, Xiao K, Sumpter B G, Meunier V and Geohegan D B 2016 ACS Nano 10 2736 [55] Zabel J, Nair R R, Ott A, Georgiou T, Geim A K, Novoselov K S and Casiraghi C 2012 Nano Lett. 12 617 [56] Beams R, Cançado L G, Jorio A, Vamivakas A N and Novotny L 2015 Nanotechnology 26 175702 [57] Komaragiri U, Begley M R and Simmonds J G 2005 J. Appl. Mech. 72 203 [58] Niehues I, Deilmann T, Kutrowska-Girzycka J, Taghizadeh A, Bryja L, Wurstbauer U, Bratschitsch R and Jadczak J 2022 Phys. Rev. B 105 205432 |
No Suggested Reading articles found! |
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
Altmetric
|
blogs
Facebook pages
Wikipedia page
Google+ users
|
Online attention
Altmetric calculates a score based on the online attention an article receives. Each coloured thread in the circle represents a different type of online attention. The number in the centre is the Altmetric score. Social media and mainstream news media are the main sources that calculate the score. Reference managers such as Mendeley are also tracked but do not contribute to the score. Older articles often score higher because they have had more time to get noticed. To account for this, Altmetric has included the context data for other articles of a similar age.
View more on Altmetrics
|
|
|