Special Issue:
SPECIAL TOPIC — Celebrating the 100th Anniversary of Physics Discipline of Northwest University
|
SPECIAL TOPIC—Celebrating the 100th Anniversary of Physics Discipline of Northwest University |
Prev
Next
|
|
|
Off-diagonal approach to the exact solution of quantum integrable systems |
Yi Qiao(乔艺)1, Junpeng Cao(曹俊鹏)2,3,4,5,†, Wen-Li Yang(杨文力)1,5,6,‡, Kangjie Shi(石康杰)1, and Yupeng Wang(王玉鹏)2,5 |
1 Institute of Modern Physics, Northwest University, Xi'an 710127, China; 2 Beijing National Laboratory for Condensed Matter Physics, Institute of Physics, Chinese Academy of Sciences, Beijing 100190, China; 3 School of Physical Sciences, University of Chinese Academy of Sciences, Beijing 100049, China; 4 Songshan Lake Materials Laboratory, Dongguan 523808, China; 5 Peng Huanwu Center for Fundamental Theory, Xi'an 710127, China; 6 Shaanxi Key Laboratory for Theoretical Physics Frontiers, Xi'an 710127, China |
|
|
Abstract We investigate the t-W scheme for the anti-ferromagnetic XXX spin chain under both periodic and open boundary conditions. We propose a new parametrization of the eigenvalues of the transfer matrix. Based on it, we obtain the exact solution of the system. By analyzing the distribution of zero roots at the ground state, we obtain the explicit expressions of the eigenfunctions of the transfer matrix and the associated $\mathbb{W}$ operator (see Eqs. (10) and (70)) in the thermodynamic limit. We find that the ratio of the quantum determinant with the eigenvalue of $\mathbb{W}$ operator for the ground state exhibits exponential decay behavior. Thus this fact ensures that the so-called inversion relation (the t-W relation without the W-term) can be used to study the ground state properties of quantum integrable systems with/without U(1)-symmetry in the thermodynamic limit.
|
Received: 05 September 2023
Revised: 19 October 2023
Accepted manuscript online: 27 October 2023
|
PACS:
|
75.10.Pq
|
(Spin chain models)
|
|
02.30.Ik
|
(Integrable systems)
|
|
03.65.Vf
|
(Phases: geometric; dynamic or topological)
|
|
Fund: Project supported by the National Key R&D Program of China (Grant No. 2021YFA1402104), the National Natural Science Foundation of China (Grant Nos. 12247103, 12305005, 12074410, 11934015, and 11975183), Major Basic Research Program of Natural Science of Shaanxi Province (Grant Nos. 2021JCW-19 and 2017ZDJC-32), Strategic Priority Research Program of the Chinese Academy of Sciences (Grant No. XDB33000000), Young Talent Fund of Xi’an Association for Science and Technology (Grant No. 959202313086), and Shaanxi Fundamental Science Research Project for Mathematics and Physics (Grant No. 22JSZ005). |
Corresponding Authors:
Junpeng Cao, Wen-Li Yang
E-mail: junpengcao@iphy.ac.cn;wlyang@nwu.edu.cn
|
Cite this article:
Yi Qiao(乔艺), Junpeng Cao(曹俊鹏), Wen-Li Yang(杨文力), Kangjie Shi(石康杰), and Yupeng Wang(王玉鹏) Off-diagonal approach to the exact solution of quantum integrable systems 2023 Chin. Phys. B 32 117504
|
[1] Yang C N 1967 Phys. Rev. Lett. 19 1312 [2] Baxter R J 1982 Exactly Solved Models in Statistical Mechanics (London:Academic Press) [3] Lax P D 1968 Commun. Pure Appl. Math. 21 467 [4] Onsager L 1944 Phys. Rev. 65 117 [5] Faddeev L D and Takhtajan L A 1981 Phys. Lett. A 85 375 [6] Lieb E H and Liniger W 1963 Phys. Rev. 130 1605 [7] Lieb E H 1963 Phys. Rev. 130 1616 [8] Lieb E H and Wu F Y 1968 Phys. Rev. Lett. 20 1445 [9] Gaudin M 1967 Phys. Lett. A 24 55 [10] Guan X W, Batchelor M T and Lee C 2013 Rev. Mod. Phys. 85 1633 [11] Beisert N, Ahn C, et al. 2012 Lett. Math. Phys. 99 3 [12] Chen B, Wang X J and Wu Y S 2004 Journal of High Energy Physics 2004 029 [13] Bethe H 1931 Zeitschrift für Physik 71 205 [14] Baxter R J 1971 Phys. Rev. Lett. 26 832 [15] Baxter R J 1971 Phys. Rev. Lett. 26 834 [16] Takhtadzhan L A and Faddeev L D 1979 Rush. Math. Surv. 34 11 [17] Sklyanin E K, Takhtajan L A and Faddeev L D 1980 Theor. Math. Phys. 40 688 [18] Faddeev L D 1980 Sov. Sci. Rev. Math. C 1 107 [19] Sklyanin E K 1982 J. Sov. Math. 19 1546 [20] Takhtadzhan L A 1985 Lect. Notes Phys. 242 175 [21] Cao J, Lin H Q, Shi K J and Wang Y 2003 Nucl. Phys. B 663 487 [22] Yung C M and Batchelor M T 1995 Nucl. Phys. B 446 461 [23] Nepomechie R I 2002 Nucl. Phys. B 662 615 [24] Baseilhac P 2006 Nucl. Phys. B 754 309 [25] Baseilhac P and Koizumi K 2007 J. Stat. Mech. 2007 P09006 [26] Niekamp S, Wirth T and Frahm H 2009 J. Phys. A:Math. Gen. 42 195008 [27] Niccoli G 2013 Nucl. Phys. B 870 397 [28] Belliard S 2015 Nucl. Phys. B 892 1 [29] Belliard S and Pimenta R A 2015 Nucl. Phys. B 894 527 [30] Cao J, Yang W L, Shi K and Wang Y 2013 Phys. Rev. Lett. 111 137201 [31] Wang Y, Yang W L, Cao J and Shi K 2015 Off-Diagonal Bethe Ansatz for Exactly Solvable Models (Berlin:Springer) [32] Yang C N and Yang C P 1969 J. Math. Phys. 10 1115 [33] Gaudin M 1971 Phys. Rev. Lett. 26 1301 [34] Takahashi M 1971 Progress Theoret. Phys. 46 401 [35] Takahashi M 1972 Progress Theoret. Phys. 47 69 [36] Takahashi M 1974 Progress Theoret. Phys. 52 103 [37] Qiao Y, Sun P, Cao J, Yang W L, Shi K and Wang Y 2020 Phys. Rev. B 102 085115 [38] Qiao Y, Cao J, Yang W L, Shi K and Wang Y 2021 Phys. Rev. B 103 L220401 [39] Le X, Qiao Y, Cao J, Yang W L, Shi K and Wang Y 2021 Journal of High Energy Physics 2021 044 [40] Lu P, Qiao Y, Cao J, Yang W L, Shi K and Wang Y 2021 Journal of High Energy Physics 2021 133 [41] Yi Y, Wang J, Qiao Y, Cao J and Yang W L 2021 Results Phys. 29 104721 [42] Yi Y, Qiao Y, Cao J and Yang W L 2022 Nucl. Phys. B 977 115732 [43] Wang W, Qiao Y, Cao J, Liu W M and Liu R H 2022 Nucl. Phys. B 975 115663 [44] Wang W, Qiao Y, Liu R H, Liu W M and Cao J 2023 Phys. Rev. D 107 056005 [45] Sun P, Yang J, Qiao Y, Cao J and Yang W L 2022 Nucl. Phys. B 974 115626 [46] Li G L, Qiao Y, Cao J, Yang W L, Shi K and Wang Y 2022 Nucl. Phys. B 984 115946 [47] Stroganov Y G 1979 Phys. Lett. A 74 116 [48] Shankar R 1981 Phys. Rev. Lett. 47 1177 [49] Kulish P P, Reshetikhin N Yu and Sklyanin E K 1981 Lett. Math. Phys. 5 393 [50] Kirillov A N and Reshetikhin N Yu 1986 J. Sov. Math. 35 2627 [51] Cao J, Yang W L, Shi K J and Wang Y 2014 Nucl. Phys. B 886 185 [52] Hao K, Cao J, Li G L, Yang W L, Shi K and Wang Y 2014 Journal of High Energy Physics 2014 128 |
No Suggested Reading articles found! |
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
Altmetric
|
blogs
Facebook pages
Wikipedia page
Google+ users
|
Online attention
Altmetric calculates a score based on the online attention an article receives. Each coloured thread in the circle represents a different type of online attention. The number in the centre is the Altmetric score. Social media and mainstream news media are the main sources that calculate the score. Reference managers such as Mendeley are also tracked but do not contribute to the score. Older articles often score higher because they have had more time to get noticed. To account for this, Altmetric has included the context data for other articles of a similar age.
View more on Altmetrics
|
|
|