Please wait a minute...
Chin. Phys. B, 2023, Vol. 32(11): 117501    DOI: 10.1088/1674-1056/ace684
CONDENSED MATTER: ELECTRONIC STRUCTURE, ELECTRICAL, MAGNETIC, AND OPTICAL PROPERTIES Prev   Next  

Structure, magnetism and magnetocaloric effects in Er5Si3Bx (x=0.3, 0.6) compounds

Zhihong Hao(郝志红)1,†, Hui Liu(刘辉)2, and Juguo Zhang(张聚国)3
1 School of Rare Earth and New Materials Engineering, Gannan University of Science and Technology, Ganzhou 341000, China;
2 School of Intelligent Manufacturing and Automotive Engineering, Gannan University of Science and Technology, Ganzhou Innovation Center of Rare earth Permanent Magnet Material Advanced Manufacturing and Intelligent Equipment Technology, Ganzhou 341000, China;
3 School of Rare Earth and New Materials Engineering, Gannan University of Science and Technology, Ganzhou Key Laboratory of Advanced Processing and Technology Optimization of High Performance Tungsten Base Materials, Ganzhou 341000, China
Abstract  We investigate the structure, magnetic properties, magnetic phase transitions and magnetocaloric effects (MCEs) of Er5Si3Bx (x=0.3, 0.6) compounds. The Er5Si3Bx (x=0.3, 0.6) compounds crystalize in a Mn5Si3 type hexagonal structure (space group: P63/cm) and exhibit a successive complicated magnetic phase transition. The extensive magnetic phase transitions contribute to the broad temperature range of MCEs exhibiting in Er5Si3Bx (x=0.3, 0.6) compounds, with maximum magnetic entropy change (-ΔSMmax) and refrigeration capacity of 10.2 J·kg-1·K-1, 356.3 J/kg and 11.5 J·kg-1·K-1, 393.3 J/kg under varying magnetic fields 0-5 T, respectively. Remarkably, the δTFWHM values (the temperature range corresponding to 1/2×|-ΔSMmax|) of Er5Si3Bx (x=0.3, 0.6) compounds were up to 41.8 K and 39.6 K, respectively. Thus, the present work provides a potential magnetic refrigeration material with a broad temperature range MCEs for applications in cryogenic magnetic refrigerators.
Keywords:  magnetic materials      cryogenic magnetic refrigeration      magnetic phase transition      magnetocaloric effects  
Received:  26 May 2023      Revised:  03 July 2023      Accepted manuscript online:  12 July 2023
PACS:  75.30.Sg (Magnetocaloric effect, magnetic cooling)  
  75.47.Np (Metals and alloys)  
Fund: This work was supported by Science and Technology Research Project for Education Department of Jiangxi Province, China (Grant No. GJJ218509).
Corresponding Authors:  Zhihong Hao     E-mail:  love_hzh@126.com

Cite this article: 

Zhihong Hao(郝志红), Hui Liu(刘辉), and Juguo Zhang(张聚国) Structure, magnetism and magnetocaloric effects in Er5Si3Bx (x=0.3, 0.6) compounds 2023 Chin. Phys. B 32 117501

[1] Cheng W, Ding D and Lei X 2016 Chin. Phys. Lett. 33 16102
[2] Hu F, Zhang G Y, Huang Y J, et al. 2014 Chin. Phys. Lett. 31 057501
[3] Yu X Y, Feng H L, Gu X, et al. 2019 Acta Phys. Sin. 68 247201 (in Chinese)
[4] Li G Q, Ke Y J, Zhang H B, et al. 2019 Acta Phys. Sin. 68 217501 (in Chinese)
[5] Cao Y Z and Zhao Y 2019 Acta Phys. Sin. 68 168502 (in Chinese)
[6] Chen X and Zhang M H 2018 Acta Phys. Sin. 67 197501 (in Chinese)
[7] Tang B Z, Liu X P, Li D M, Yu P and Xia L 2020 Chin. Phys. B 29 056401
[8] Ma Y F, Tang B Z, Xia L and Ding D 2016 Chin. Phys. B 33 126101
[9] Bao L F, Huang W D and Ren Y J 2016 Chin. Phys. Lett. 33 77502
[10] Tian L, Gong J J, Fu Q, Gao X Q, Mo Z J, Li Z X and Shen J 2023 J. Magn. Magn. Mater. 566 170194
[11] Tian L, Fu Q, Mo Z J, Sun H, Li Z X, Shen J and Liu G D 2023 J. Magn. Magn. Mater. 576 170770
[12] Cheng J H, Wang Y G and Xie D 2015 Chin. Phys. Lett. 32 17503
[13] Ding D, Zhang Y Q and Xia L 2015 Chin. Phys. Lett. 32 106101
[14] Mo Z J, Shen J, Yan L Q, Tang C C, Lin J, Wu J F, Sun J R, Wang L C, Zheng X Q and Shen B G 2013 Appl. Phys. Lett. 103 052409
[15] Ding D, Wang P, Guan Q, et al. 2013 Chin. Phys. Lett. 30 096104
[16] Hao Z H, Wang H Y, Zhang Q, et al. 2018 Acta Phys. Sin. 67 247502 (in Chinese)
[17] Zhang H, Xing C F, Long K W, et al. 2018 Acta Phys. Sin. 67 207501 (in Chinese)
[18] Yang J J, Zhao J L, Xu L, et al. 2018 Acta Phys. Sin. 67 077501 (in Chinese)
[19] Guo D, Zhang Y K, Wang Y M, et al. 2020 Chin. Phys. B 29 107502
[20] Ding Y H, Meng F Z and Wang L C 2020 Chin. Phys. B 29 077501
[21] Hao J Z, Hu F X, Yu Z B, et al. 2020 Chin. Phys. B 29 047504
[22] Liu P F, Peng J, Xue M Q, et al. 2020 Chin. Phys. B 29 047503
[23] Jiang W H, Mo Z J and Luo J W 2020 Chin. Phys. B 29 037502
[24] Yu T L, Yu X Y, Yang E, et al. 2019 Chin. Phys. B 28 067501
[25] Yao G Q, Sun S Y, Yang J C, Wu H F, Wang Q, Zhu J and Cui W B 2021 Scr. Mater. 194 113649
[26] Takeya H, Pecharsky V K, Gschneidner K A and Moorman J O 1994 Appl. Phys. Lett. 64 2739
[27] Zhang Y K, Xu P, Zhu J, Yan S M, Zhang J C and Li L W 2023 Mater. Today Phys. 32 101031
[28] Sun H, Wang J F, Tian L, Gong J J, Mo Z J, Shen J and Shen B G 2022 Chin. Phys. B 31 117503
[29] Zhang Y K, Guo D, Li H D, Geng S H, Wang J, Li X, Xu H, Ren Z M and Wilde G 2018 J. Alloys Compd. 733 40
[30] Feng J Q, Liu Y H, Sui J H, He A N, Xia W X, Wang W H and Wang J Q 2021 Mater. Today Phys. 21 100528
[31] Li L W, Yuan Y, Qi Y, Wang Q and Zhou S Q 2017 Mater. Res. Lett. 6 67
[32] Balfour E A, Shang Y F, Zheng Q, Cao Y T, Fu H, E-Gendy A A and Hadimani R L 2018 J. Magn. Magn. Mater. 467 108
[33] Zhang H, Xu Z Y, Zheng X Q, Shen J, Hu F X, Sun J R and Shen B G 2012 Solid State Commun. 152 1127
[34] Semitelou I P, Yakinthos J K and Roudaut E 1995 J. Phys. Chem. Solids 56 891
[35] Roger J, Yahia M B, Babizhetskyy V, Bauer J, Cordier S, Guerin R, Hiebl K, Rocquefelte X, Saillard J Y and Halet J F 2006 J. Solid State Chem. 179 2310
[36] Mohapatra N, Mukherjee K, Iyer K K and Sampathkumaran E V 2011 J. Phys.:Condens. Matter 23 496001
[37] Zhang H, Wu Y Y, Long Y, Wang H S, Zhong K X, Hu F X, Sun J R and Shen B G 2014 J. Appl. Phys. 116 213902
[38] Hermes W, Rodewakd U C and Pottgen R J Appl. Phys. 108 113919
[39] Li D X, Yamamura T, Nimori S, Homma Y and Honda F 2013 Appl. Phys. Lett. 102 152409
[40] Fukuma H, Suzuki T and Kasuya T 1985 J. Magn. Magn. Mater. 52 7
[41] Banerjee B K 1964 Phys. Lett. 12 16
[42] Franco V, Blázquez J S and Upus J J 2018 Prog. Mater. Sci. 93 112
[43] Gschneidner K A and Pecharsky V K 2000 Annu. Rev. Mater. Sci. 30 387
[44] Griffith L D, Mudryk Y, Slaughter J and Pecharsky V K J Appl. Phys. 123 034902
[1] Magnetic and electronic properties of La-doped hexagonal 4H-SrMnO3
Jie Li(李杰), Yinan Chen(陈一楠), Nuo Gong(宫诺), Xin Huang(黄欣), Zhihong Yang(杨志红), and Yakui Weng(翁亚奎). Chin. Phys. B, 2024, 33(1): 017502.
[2] Magnetic van der Waals materials: Synthesis, structure, magnetism, and their potential applications
Zhongchong Lin(林中冲), Yuxuan Peng(彭宇轩), Baochun Wu(吴葆春), Changsheng Wang(王常生), Zhaochu Luo(罗昭初), and Jinbo Yang(杨金波). Chin. Phys. B, 2022, 31(8): 087506.
[3] Magnetic and magnetocaloric effect in a stuffed honeycomb polycrystalline antiferromagnet GdInO3
Yao-Dong Wu(吴耀东), Wei-Wei Duan(段薇薇), Qiu-Yue Li(李秋月), Yong-Liang Qin(秦永亮),Zhen-Fa Zi(訾振发), and Jin Tang(汤进). Chin. Phys. B, 2022, 31(6): 067501.
[4] Raman spectroscopy investigation on the pressure-induced structural and magnetic phase transition in two-dimensional antiferromagnet FePS3
Hong Zeng(曾鸿), Tingting Ye(叶婷婷), Peng Cheng(程鹏), Deyuan Yao(姚德元), and Junfeng Ding(丁俊峰). Chin. Phys. B, 2022, 31(5): 056109.
[5] Formation of L10-FeNi hard magnetic material from FeNi-based amorphous alloys
Yaocen Wang(汪姚岑), Ziyan Hao(郝梓焱), Yan Zhang(张岩), Xiaoyu Liang(梁晓宇), Xiaojun Bai(白晓军), and Chongde Cao(曹崇德). Chin. Phys. B, 2022, 31(4): 046301.
[6] CeAu2In4: A candidate of quasi-one-dimensional antiferromagnetic Kondo lattice
Meng Lyu(吕孟), Hengcan Zhao(赵恒灿), Jiahao Zhang(张佳浩), Zhen Wang(王振), Shuai Zhang(张帅), and Peijie Sun(孙培杰). Chin. Phys. B, 2021, 30(8): 087101.
[7] Oxygen vacancy control of electrical, optical, and magnetic properties of Fe0.05Ti0.95O2 epitaxial films
Qing-Tao Xia(夏清涛), Zhao-Hui Li(李召辉), Le-Qing Zhang(张乐清), Feng-Ling Zhang(张凤玲), Xiang-Kun Li(李祥琨), Heng-Jun Liu(刘恒均), Fang-Chao Gu(顾方超), Tao Zhang(张涛), Qiang Li(李强), and Qing-Hao Li(李庆浩). Chin. Phys. B, 2021, 30(11): 117701.
[8] Mn-based permanent magnets
Jinbo Yang(杨金波), Wenyun Yang(杨文云), Zhuyin Shao(邵珠印), Dong Liang(梁栋), Hui Zhao(赵辉), Yuanhua Xia(夏元华), Yunbo Yang(杨云波). Chin. Phys. B, 2018, 27(11): 117503.
[9] Serrated magnetic properties in metallic glass by thermal cycle
Myong-Chol Ri(李明哲), Sajad Sohrabi, Da-Wei Ding(丁大伟), Bang-Shao Dong(董帮少), Shao-Xiong Zhou(周少雄), Wei-Hua Wang(汪卫华). Chin. Phys. B, 2017, 26(6): 066101.
[10] Structure dependence of magnetic properties in yttrium iron garnet by metal-organic decomposition method
Yuan Liu(刘园), Xiang Wang(王翔), Jie Zhu(朱杰), Runsheng Huang(黄润生), Dongming Tang(唐东明). Chin. Phys. B, 2017, 26(5): 057501.
[11] Pressure induced magnetic and semiconductor-metal phase transitions in Cr2MoO6
San-Dong Guo(郭三栋). Chin. Phys. B, 2016, 25(5): 057104.
[12] Effects of Mg substitution on the structural and magnetic properties of Co0.5Ni0.5-xMgxFe2O4 nanoparticle ferrites
R M Rosnan, Z Othaman, R Hussin, Ali A Ati, Alireza Samavati, Shadab Dabagh, Samad Zare. Chin. Phys. B, 2016, 25(4): 047501.
[13] Review of magnetic properties and magnetocaloric effect in the intermetallic compounds of rare earth with low boiling point metals
Ling-Wei Li(李领伟). Chin. Phys. B, 2016, 25(3): 037502.
[14] Magnetocaloric effect study of SrFe0.8Co0.2O3 single crystal prepared under high pressure
Xia Hai-Liang (夏海亮), Qin Xiao-Mei (秦晓梅), Yang Jun-Ye (杨俊叶), Yin Yun-Yu (殷云宇), Dai Jian-Hong (戴建洪), Shi Wang-Zhou (石旺舟), Long You-Wen (龙有文). Chin. Phys. B, 2015, 24(5): 050701.
[15] Fabrication and magnetic properties of 4SC(NH2)2-Ni0.97Cu0.03Cl2 single crystals
Chen Li-Min (陈丽敏), Guo Ying (郭颖), Liu Xu-Guang (刘旭光), Xie Qi-Yun (解其云), Tao Zhi-Kuo (陶志阔), Chen Jing (谌静), Zhou Ling-Ling (周玲玲), Liu Chun-Sheng (刘春生). Chin. Phys. B, 2015, 24(12): 127503.
No Suggested Reading articles found!