Please wait a minute...
Chin. Phys. B, 2023, Vol. 32(11): 117502    DOI: 10.1088/1674-1056/acd8aa
CONDENSED MATTER: ELECTRONIC STRUCTURE, ELECTRICAL, MAGNETIC, AND OPTICAL PROPERTIES Prev   Next  

Investigation of magnetization reversal and domain structures in perpendicular synthetic antiferromagnets by first-order reversal curves and magneto-optical Kerr effect

Xiang-Qian Wang(王向谦)1,2, Jia-Nan Li(李佳楠)1,†, Kai-Zhou He(何开宙)2, Ming-Ling Xie(谢明玲)2, and Xu-Peng Zhu(朱旭鹏)1
1 School of Physics Science and Technology, Lingnan Normal University, Zhanjiang 524048, China;
2 Key Laboratory of Sensor and Sensor Technology, Institute of Sensor Technology, Gansu Academy of Sciences, Lanzhou 730000, China
Abstract  Perpendicular synthetic-antiferromagnet (p-SAF) has broad applications in spin-transfer-torque magnetic random access memory and magnetic sensors. In this study, the p-SAF films consisting of (Co/Ni)3]/Ir(tIr)/[(Ni/Co)3 are fabricated by magnetron sputtering technology. We study the domain structure and switching field distribution in p-SAF by changing the thickness of the infrared space layer. The strongest exchange coupling field (Hex) is observed when the thickness of Ir layer (tIr) is 0.7 nm and becoming weak according to the Ruderman-Kittel-Kasuya-Yosida-type coupling at 1.05 nm, 2.1 nm, 4.55 nm, and 4.9 nm in sequence. Furthermore, the domain switching process between the upper Co/Ni stack and the bottom Co/Ni stack is different because of the antiferromagnet coupling. Compared with ferromagnet coupling films, the antiferromagnet samples possess three irreversible reversal regions in the first-order reversal curve distribution. With tIr increasing, these irreversible reversal regions become denser and smaller. The results from this study will help us understand the details of the magnetization reversal process in the p-SAF.
Keywords:  perpendicular synthetic antiferromagnet      first-order reversal curves      magnetization reversal process      domain  
Received:  12 February 2023      Revised:  21 May 2023      Accepted manuscript online:  25 May 2023
PACS:  75.50.Ee (Antiferromagnetics)  
  75.70.Kw (Domain structure (including magnetic bubbles and vortices))  
  85.75.-d (Magnetoelectronics; spintronics: devices exploiting spin polarized transport or integrated magnetic fields)  
  75.60.Jk (Magnetization reversal mechanisms)  
Fund: Project supported by the Natural Science Foundation of Gansu Province, China (Grant No. 22JR5RA775), the Science and Technology Program of Lanzhou, China (Grant No. 2021-1-157), the Guangdong Basic and Applied Basic Research Foundation, China (Grant Nos. 2020A1515110998 and 2022A1515012123), the Outstanding Youth Foundation of Gansu Academy of Science, China (Grant No. 2021YQ- 01), and the Innovative Team Construction Project of Gansu Academy of Sciences, China (Grant No. 2020CX005-01).
Corresponding Authors:  Jia-Nan Li     E-mail:  lijn@lingnan.edu.cn

Cite this article: 

Xiang-Qian Wang(王向谦), Jia-Nan Li(李佳楠), Kai-Zhou He(何开宙),Ming-Ling Xie(谢明玲), and Xu-Peng Zhu(朱旭鹏) Investigation of magnetization reversal and domain structures in perpendicular synthetic antiferromagnets by first-order reversal curves and magneto-optical Kerr effect 2023 Chin. Phys. B 32 117502

[1] Peng Z L, Han X F, Zhao S F, et al. 2006 Acta Phys. Sin. 55 860 (in Chinese)
[2] Liu E L, Wu Y C, Couet S, et al. 2018 Phys. Rev. Appl. 10 054054
[3] Zhou Z T, Yan S H, Zhao W S, et al. 2022 Acta Phys. Sin. 71 058504 (in Chinese)
[4] Lavanant M, Vallobra P, Watelot S P, et al. 2019 Phys. Rev. Appl. 11 034058
[5] Natarajarathinam A, Zhu R, Visscher P B, et al. 2012 J. Appl. Phys. 111 07C918
[6] Pan Z Z, Ma MY, Chen Z D, et al. 2021 J. Appl. Phys. 129 133901
[7] Liu N S, Wang C and Ji W 2022 Acta Phys. Sin. 71 127504 (in Chinese)
[8] Chen R Y, Zhang R Q, Zhou Y J, et al. 2020 Appl. Phys. Lett. 116 242403
[9] Wu G, Chen S, Lou S, et al. 2019 Appl. Phys. Lett. 115 142402
[10] Ju H L, Li B H, Wu Z F, et al. 2015 Acta Phys. Sin. 64 097501 (in Chinese)
[11] Daalderop G H O, Kelly P J and Schuurmans M F H 1994 Phys. Rev. B 50 9989
[12] Subhi A A and Sbiaa R 2019 J. Magn. Magn. Mater. 489 165460
[13] Chen S H, Xiao Y L, Xie W H, et al. 2014 Appl. Phys. Lett. 105 037207
[14] Pandey N, Li M, Graef M D, et al. 2020 AIP Adv. 10 015233
[15] Pike C R 2003 Phys. Rev. B 68 104424
[16] Almasi-Kashi, M, Ramazani A, Golafshan E, et al. 2013 Physica B 429 46
[17] Qiu J, Meng Z, Yi Y, et al. 2016 AIP Adv. 6 056123
[1] Effect of CeO2 doping on the coercivity of 2:17 type SmCo magnets
Xiao-Lei Gao(高晓磊), Zhuang Liu(刘壮), Guang-Qing Wang(王广庆), Chao-Qun Zhu(竺超群), Wen-Xin Cheng(程文鑫), Ming-Xiao Zhang(张明晓), Xin-Cai Liu(刘新才), Ren-Jie Chen(陈仁杰), and A-Ru Yan(闫阿儒). Chin. Phys. B, 2023, 32(9): 097504.
[2] Effect of TbF3 diffusion on the demagnetization behavior and domain evolution of sintered Nd-Fe-B magnets by electrophoretic deposition
Xue-Jing Cao(曹学静), Shuai Guo(郭帅), Yu-Heng Xie(谢宇恒), Lei Jin(金磊), Guang-Fei Ding(丁广飞),Bo Zheng(郑波), Ren-Jie Chen(陈仁杰), and A-Ru Yan(闫阿儒). Chin. Phys. B, 2023, 32(9): 097503.
[3] Electronic states of domain walls in commensurate charge density wave ground state and mosaic phase in 1T-TaS2
Yan Li(李彦), Yao Xiao(肖遥), Qi Zheng(郑琦), Xiao Lin(林晓), Li Huang(黄立), and Hong-Jun Gao(高鸿钧). Chin. Phys. B, 2023, 32(7): 077101.
[4] Prediction of lattice thermal conductivity with two-stage interpretable machine learning
Jinlong Hu(胡锦龙), Yuting Zuo(左钰婷), Yuzhou Hao(郝昱州), Guoyu Shu(舒国钰), Yang Wang(王洋), Minxuan Feng(冯敏轩), Xuejie Li(李雪洁), Xiaoying Wang(王晓莹), Jun Sun(孙军), Xiangdong Ding(丁向东), Zhibin Gao(高志斌), Guimei Zhu(朱桂妹), and Baowen Li(李保文). Chin. Phys. B, 2023, 32(4): 046301.
[5] Domain size and charge defects affecting the polarization switching of antiferroelectric domains
Jinghao Zhu(朱静浩), Zhen Liu(刘震), Boyi Zhong(钟柏仪), Yaojin Wang(汪尧进), and Baixiang Xu(胥柏香). Chin. Phys. B, 2023, 32(4): 047701.
[6] Integrated system of traditional THz time-domain spectroscopy and asynchronous optical sampling
Jing Ding(丁晶), Qing-Hao Meng(孟庆昊), Yan Shen(沈妍), Chen-Xin Ding(丁晨鑫), Bo Su(苏波), Hai-Lin Cui(崔海林), and Cun-Lin Zhang(张存林). Chin. Phys. B, 2023, 32(4): 048702.
[7] Ghost imaging based on the control of light source bandwidth
Zhao-Qi Liu(刘兆骐), Yan-Feng Bai(白艳锋), Xuan-Peng-Fan Zou(邹璇彭凡), Li-Yu Zhou(周立宇), Qin Fu(付芹), and Xi-Quan Fu(傅喜泉). Chin. Phys. B, 2023, 32(3): 034210.
[8] Effect of thickness on magnetic properties of single domain GdBCO bulk superconductors
Ping Gao(高平), Wan-Min Yang(杨万民), Ting-Ting Wu(武婷婷), Miao Wang(王妙), and Kun Liu(刘坤). Chin. Phys. B, 2023, 32(2): 027401.
[9] Multi-segmented nanowires for vortex magnetic domain wall racetrack memory
M Al Bahri, M Al Hinaai, and T Al Harthy. Chin. Phys. B, 2023, 32(12): 127508.
[10] Fast estimation of distance between two hydrophones using ocean ambient noise in multi-ship scenarios
Xuefeng Liu(刘雪枫), Zhi Xia(夏峙), Qi Li(李琪), and Ye Ding(丁烨). Chin. Phys. B, 2023, 32(12): 124301.
[11] Ferroelectric domain wall memory
Yiming Li(李一鸣), Jie Sun(孙杰), and Anquan Jiang(江安全). Chin. Phys. B, 2023, 32(12): 128504.
[12] Thickness-dependent magnetic properties in Pt/[Co/Ni]n multilayers with perpendicular magnetic anisotropy
Chunjie Yan(晏春杰), Lina Chen(陈丽娜), Kaiyuan Zhou(周恺元), Liupeng Yang(杨留鹏), Qingwei Fu(付清为), Wenqiang Wang(王文强), Wen-Cheng Yue(岳文诚), Like Liang(梁力克), Zui Tao(陶醉), Jun Du(杜军),Yong-Lei Wang(王永磊), and Ronghua Liu(刘荣华). Chin. Phys. B, 2023, 32(1): 017503.
[13] Current oscillation in GaN-HEMTs with p-GaN islands buried layer for terahertz applications
Wen-Lu Yang(杨文璐), Lin-An Yang(杨林安), Fei-Xiang Shen(申飞翔), Hao Zou(邹浩), Yang Li(李杨), Xiao-Hua Ma(马晓华), and Yue Hao(郝跃). Chin. Phys. B, 2022, 31(5): 058505.
[14] Experimental observation of interlayer perpendicular standing spin wave mode with low damping in skyrmion-hosting [Pt/Co/Ta]10 multilayer
Zhen-Dong Chen(陈振东), Mei-Yang Ma(马眉扬), Sen-Fu Zhang(张森富), Mang-Yuan Ma(马莽原), Zi-Zhao Pan(潘咨兆), Xi-Xiang Zhang(张西祥), Xue-Zhong Ruan(阮学忠), Yong-Bing Xu(徐永兵), and Fu-Sheng Ma(马付胜). Chin. Phys. B, 2022, 31(11): 117501.
[15] Terahertz magnetic resonance in MnCr2O4 under high magnetic field
Peng Zhang(张朋), Kaibo He(贺凯博), Zheng Wang(王铮), Shile Zhang(张仕乐), Jianming Dai(戴建明), and Fuhai Su(苏付海). Chin. Phys. B, 2022, 31(10): 107502.
No Suggested Reading articles found!