Please wait a minute...
Chin. Phys. B, 2023, Vol. 32(11): 113701    DOI: 10.1088/1674-1056/acc807
Special Issue: Featured Column — INSTRUMENTATION AND MEASUREMENT
INSTRUMENTATION AND MEASUREMENT Prev   Next  

A cryogenic radio-frequency ion trap for a 40Ca+ optical clock

Mengyan Zeng(曾孟彦)1,2,3,†, Yao Huang(黄垚)2,3,†, Baolin Zhang(张宝林)2,3, Zixiao Ma(马子晓)2,3,4, Yanmei Hao(郝艳梅)2,3,4, Ruming Hu(胡如明)2,3,4, Huaqing Zhang(张华青)2,3, Hua Guan(管桦)2,3,5,‡, and Kelin Gao(高克林)2,3,§
1 Huazhong University of Science and Technology, Wuhan 430074, China;
2 State Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics, Innovation Academy for Precision Measurement Science and Technology, Chinese Academy of Sciences, Wuhan 430071, China;
3 Key Laboratory of Atomic Frequency Standards, Innovation Academy for Precision Measurement Science and Technology, Chinese Academy of Sciences, Wuhan 430071, China;
4 University of Chinese Academy of Sciences, Beijing 100049, China;
5 Wuhan Institute of Quantum Technology, Wuhan 430206, China
Abstract  A liquid-nitrogen cryogenic 40Ca+ optical clock is presented that is designed to greatly reduce the blackbody radiation (BBR) shift. The ion trap, the electrodes and the in-vacuum BBR shield are installed under the liquid-nitrogen container, keeping the ions in a cryogenic environment at liquid-nitrogen temperature. Compared with the first design in our previous work, many improvements have been made to increase the performance. The liquid-nitrogen maintenance time has been increased by about three times by increasing the volume of the liquid-nitrogen container; the trap position recovery time after refilling the liquid-nitrogen container has been decreased more than three times by using a better fixation scheme in the liquid-nitrogen container; and the magnetic field noise felt by the ions has been decreased more than three times by a better design of the magnetic shielding system. These optimizations make the scheme for reducing the BBR shift uncertainty of liquid-nitrogen-cooled optical clocks more mature and stable, and develop a stable lock with a narrower linewidth spectrum, which would be very beneficial for further reducing the overall systematic uncertainty of optical clocks.
Keywords:  cryogenics      ion trapping      40Ca+ optical clock  
Received:  10 February 2023      Revised:  23 March 2023      Accepted manuscript online:  28 March 2023
PACS:  37.10.Ty (Ion trapping)  
  07.20.Mc (Cryogenics; refrigerators, low-temperature detectors, and other low-temperature equipment)  
  95.55.Sh (Auxiliary and recording instruments; clocks and frequency standards)  
Fund: This work was supported by the National Key R&D Program of China (Grant Nos. 2022YFB3904001 and 2018YFA0307500), the National Natural Science Foundation of China (Grant Nos. 12121004 and 12022414), Strategic Priority Research Program of the Chinese Academy of Sciences (Grant No. XDB21030100), CAS Project for Young Scientists in Basic Research (Grant No. YSBR- 055), CAS Youth Innovation Promotion Association (Grant Nos. Y201963 and Y2022099), the Natural Science Foundation of Hubei Province (Grant No. 2022CFA013), and the Interdisciplinary Cultivation Project of the Innovation Academy for Precision Measurement of Science and Technology (Grant No. S21S2201).
Corresponding Authors:  Hua Guan, Kelin Gao     E-mail:  guanhua@apm.ac.cn;klgao@apm.ac.cn

Cite this article: 

Mengyan Zeng(曾孟彦), Yao Huang(黄垚), Baolin Zhang(张宝林), Zixiao Ma(马子晓), Yanmei Hao(郝艳梅), Ruming Hu(胡如明), Huaqing Zhang(张华青), Hua Guan(管桦), and Kelin Gao(高克林) A cryogenic radio-frequency ion trap for a 40Ca+ optical clock 2023 Chin. Phys. B 32 113701

[1] Huang Y, Zhang B L, Zeng M Y, Hao Y M, Ma Z X, Zhang H Q, Guan H, Chen Z, Wang M and Gao K L 2022 Phys. Rev. Appl. 17 034041
[2] Brewer S M, Chen J S, Hankin A M, Clements E R, Chou C W, Wineland D J, Hume D B and Leibrandt D R 2019 Phys. Rev. Lett. 123 033201
[3] Huntemann N, Sanner C, Lipphardt B, Tamm C and Peik E 2016 Phys. Rev. Lett. 116 063001
[4] Dubé P, Madej A A, Zhou Z and Bernard J E 2013 Phys. Rev. A 87 023806
[5] McGrew W F, Zhang X, Fasano R J, Schäffer S A, Beloy K, Nicolodi D, Brown R C, Hinkley N, Milani G, Schioppo M, Yoon T H and Ludlow A D 2018 Nature 564 87
[6] Ushijima I, Takamoto M, Das M, Ohkubo T and Katori H 2015 Nature Photonics 9 185
[7] Bothwell T, Kedar D, Oelker E, Robinson J M, Bromley S L, Tew W L, Ye J and Kennedy C J 2019 Metrologia 56 065004
[8] Lu B K, Sun Z, Yang T, Lin Y G, Wang Q, Li Y, Meng F, Lin B K, Li T C and Fang Z J 2022 Chin. Phys. Lett. 39 080601
[9] Riehle F, Gill P, Arias F and Robertsson L 2018 Metrologia 55 188
[10] Gill P 2016 J. Phys.:Conf. Ser. 723 012053
[11] Safronova M S, Budker D, DeMille D, Kimball D F J, Derevianko A and Clark C W 2018 Rev. Mod. Phys. 90 025008
[12] Rafac R J, Young B C, Beall J A, Itano W M, Wineland D J and Bergquist J C 2000 Phys. Rev. Lett. 85 2462
[13] King S A, Spieβ L J, Micke P, Wilzewski A, Leopold T, Benkler E, Lange R, Huntemann N, Surzhykov A, Yerokhin V A, López-Urrutia J R C and Schmidt P O 2022 Nature 611 43
[14] Ohmae N, Bregolin F, Nemitz N and Katori H 2020 Opt. Express 28 15112
[15] Golovizin A, Fedorova E, Tregubov D, Sukachev D, Khabarova K, Sorokin V and Kolachevsky N 2019 Nat. Commun. 10 1724
[16] Ohtsubo N, Li Y, Nemitz N, Hachisu H, Matsubara K, Ido T and Hayasaka K 2020 Opt. Lett. 45 5950
[17] Arnold K J, Kaewuam R, Roy A, Tan T R and Barrett M D 2018 Nat. Commun. 9 1650
[18] Derevianko A, Dzuba V A and Flambaum V V 2012 Phys. Rev. Lett. 109 180801
[19] Liang S Y, Zhang T X, Guan H, Lu Q F, Xiao J, Chen S L, Huang Y, Zhang Y H, Li C B, Zou Y M, Li J G, Yan Z C, Derevianko A, Zhan M S, Shi T Y and Gao K L 2021 Phys. Rev. A 103 022804
[20] Schmidt P O, Rosenband T, Langer C, Itano W M, Bergquist J C and Wineland D J 2005 Science 309 749
[21] Schwarz M, Versolato O O, Windberger A, Brunner F R, Balance T, Eberle S N, Ullrich J, Schmidt P O, Hansen A K, Gingell A D, Drewsen M and López-Urrutia J C R 2012 Rev. Sci. Instrum. 83 083115
[22] Repp J, Böhm C, López-Urrutia J R C, Dörr A, Eliseev S, George S, Goncharov M, Novikov Y N, Roux C, Sturm S, Ulmer S and Blaum K 2012 Appl. Phys. B 107 983
[23] Leopold T, King S A, Micke P, Bautista-Salvador A, Heip J C, Ospelkaus C, López-Urrutia J R C and Schmidt P O 2019 Rev. Sci. Instrum. 90 073201
[24] Pagano G, Hess P W, Kaplan H B, Tan W L, Richerme P, Becker P, Kyprianidis A, Zhang J, Birckelbaw E, Hernandez M R, Wu Y and Monroe C 2019 Quantum Sci. Technol. 4 014004
[25] Rosenband T, Hume D B, Schmidt P O, Chou C W, Brusch A, Lorini L, Oskay W H, Drullinger R E, Fortier T M, Stalnaker J E, Diddams S A, Swann W C, Newbury N R, Itano W M, Wineland D J and Bergquist J C 2008 Science 319 1808
[26] Liu P L, Huang Y, Bian W, Shao H, Qian Y, Guan H and Gao K L 2014 Chin. Phys. Lett. 31 113702
[27] Huang Y, Guan H, Liu P, Bian W, Ma L S, Liang K, Li T C and Gao K L 2016 Phys. Rev. Lett. 116 013001
[28] Huang Y, Guan H, Zeng M Y, Tang L Y and Gao K L 2019 Phys. Rev. A 99 011401
[29] Porsev S G and Derevianko A 2006 Phys. Rev. A 74 020502
[30] Angstmann E, Dzuba V and Flambaum V 2006 Phys. Rev. Lett. 97 040802
[31] Micke P, Stark J, King S A, Leopold T, Pfeifer T, Schmöger L, Schwarz M, Spieβ L J, Schmidt P O and López-Urrutia J R C 2019 Rev. Sci. Instrum. 90 065104
[32] Guan H, Zhang B L, Zhang H Q, Huang Y, Hao Y M, Zeng M Y and Gao K L 2021 AVS Quantum Sci. 3 044701
[33] Shao H, Wang M, Zeng M Y, Guan H and Gao K L 2018 J. Phys. Commun. 2 095019
[34] Poitzsch M E, Bergquist J C, Itano W M and Wineland D J 1996 Rev. Sci. Instrum. 67 129
[35] Brandl M F, Mourik M W, Postler L, Nolf A, Lakhmanskiy K, Paiva R R, Möller S, Daniilidis N, Häffner H, Kaushal V, Ruster T, Warschburger C, Kaufmann H, Poschinger U G, Schmidt-Kaler F, Schindler P, Monz T and Blatt R 2016 Rev. Sci. Instrum. 87 113103
[36] Beloy K, Hinkley N, Phillips N B, Sherman J A, Schioppo M, Lehman J, Feldman A, Hanssen L M, Oates C W and Ludlow A D 2014 Phys. Rev. Lett. 113 260801
[37] Chen J S, Brewer S M, Chou C W, Wineland D J, Leibrandt D R and Hume D B 2017 Phys. Rev. Lett. 118 053002
[38] Berkeland D J, Miller J D, Bergquist J C, Itano W M and Wineland D J 1998 J. Appl. Phys. 83 5025
[39] Huang Y, Liu Q, Cao J, Ou B Q, Liu P L, Guan H, Huang X R and Gao K L 2011 Phys. Rev. A 84 053841
[40] Margolis H S, Barwood G P, Huang G, Klein H A, Lea S N, Szymaniec K and Gill P 2004 Science 306 1355
[41] Madej A A, Dubé P, Zhou Z, Bernard J E and Gertsvolf M 2012 Phys. Rev. Lett. 109 203002
[42] Tommaseo, Pfeil T, Revalde G, Werth G, Indelicato P and Desclaux J 2003 Eur. Phys. J. D 25 113
[43] Ozeri R 2011 Contemp. Phys. 52 531
[44] Chwalla M, Benhelm J, Kim K, Kirchmair G, Monz T, Riebe M, Schindler P, Villar A S, Hänsel W, Roos C F, Blatt R, Abgrall M, Santarelli G, Rovera G D and Laurent P 2009 Phys. Rev. Lett. 102 023002
[45] Shao H, Huang Y, Guan H, Li C B, Shi T Y and Gao K L 2017 Phys. Rev. A 95 053415
[46] Dehmelt H G 1982 IEEE T. Instrum. Meas. 31 83
[1] A combined magnetic field stabilization system for improving the stability of 40Ca+ optical clock
Mengyan Zeng(曾孟彦), Zixiao Ma(马子晓), Ruming Hu(胡如明), Baolin Zhang(张宝林), Yanmei Hao(郝艳梅), Huaqing Zhang(张华青), Yao Huang(黄垚), Hua Guan(管桦), and Kelin Gao(高克林). Chin. Phys. B, 2023, 32(11): 110704.
[2] High-performance coherent population trapping clock based on laser-cooled atoms
Xiaochi Liu(刘小赤), Ning Ru(茹宁), Junyi Duan(段俊毅), Peter Yun(云恩学), Minghao Yao(姚明昊), and Jifeng Qu(屈继峰). Chin. Phys. B, 2022, 31(4): 043201.
[3] Atomic magnetometer with microfabricated vapor cells based on coherent population trapping
Xiaojie Li(李晓杰), Yue Shi(史越), Hongbo Xue(薛洪波), Yong Ruan(阮勇), and Yanying Feng(冯焱颖). Chin. Phys. B, 2021, 30(3): 030701.
[4] Ramsey-coherent population trapping Cs atomic clock based on lin||lin optical pumping with dispersion detection
Peng-Fei Cheng(程鹏飞), Jian-Wei Zhang(张建伟), Li-Jun Wang(王力军). Chin. Phys. B, 2019, 28(7): 070601.
[5] Theoretical analysis of suppressing Dick effect in Ramsey-CPT atomic clock by interleaving lock
Xiao-Lin Sun(孙晓林), Jian-Wei Zhang(张建伟), Peng-Fei Cheng(程鹏飞), Ya-Ni Zuo(左娅妮), Li-Jun Wang(王力军). Chin. Phys. B, 2018, 27(2): 023101.
[6] Investigation of the nonlinear CPT spectrum of 87Rb and its application for large dynamic magnetic measurement
Chi Xu(徐迟), Shi-Guang Wang(王时光), Yong Hu(胡勇), Yan-Ying Feng(冯焱颖), Li-Jun Wang(王力军). Chin. Phys. B, 2017, 26(6): 064203.
[7] Coherent population trapping magnetometer by differential detecting magneto-optic rotation effect
Fan Zhang(张樊), Yuan Tian(田原), Yi Zhang(张奕), Si-Hong Gu(顾思洪). Chin. Phys. B, 2016, 25(9): 094206.
[8] Image transfer through coherent population trapping based on an atomic ensemble
Zhen-Hai Han(韩振海), Dong-Sheng Ding(丁冬生). Chin. Phys. B, 2016, 25(12): 124201.
[9] Optical nuclear spin polarization in quantum dots
Ai-Xian Li(李爱仙), Su-Qing Duan(段素青), Wei Zhang(张伟). Chin. Phys. B, 2016, 25(10): 108506.
[10] Phase-controlled coherent population trapping in superconducting quantum circuits
Cheng Guang-Ling (程广玲), Wang Yi-Ping (王一平), Chen Ai-Xi (陈爱喜). Chin. Phys. B, 2015, 24(4): 044204.
[11] Implementation of ternary Shor's algorithm based on vibrational states of an ion in anharmonic potential
Liu Wei (刘威), Chen Shu-Ming (陈书明), Zhang Jian (张见), Wu Chun-Wang (吴春旺), Wu Wei (吴伟), Chen Ping-Xing (陈平形). Chin. Phys. B, 2015, 24(3): 033701.
[12] Comparison experiments of neon and helium buffer gases cooling in trapped 199Hg+ ions linear trap
Yang Yu-Na (杨玉娜), Liu Hao (柳浩), He Yue-Hong (何跃宏), Yang Zhi-Hui (杨智慧), Wang Man (汪漫), Chen Yi-He (陈义和), She Lei (佘磊), Li Jiao-Mei (李交美). Chin. Phys. B, 2014, 23(9): 093702.
[13] Integrated physics package of a chip-scale atomic clock
Li Shao-Liang (李绍良), Xu Jing (徐静), Zhang Zhi-Qiang (张志强), Zhao Lu-Bing (赵璐冰), Long Liang (龙亮), Wu Ya-Ming (吴亚明). Chin. Phys. B, 2014, 23(7): 074302.
[14] Transient responses of transparency in a far-off resonant atomic system
Hu Zheng-Feng (胡正峰), Du Chun-Guang (杜春光), Deng Jian-Liao (邓见辽), Wang Yu-Zhu (王育竹). Chin. Phys. B, 2014, 23(5): 054204.
[15] Review of chip-scale atomic clocks based on coherent population trapping
Wang Zhong (汪中). Chin. Phys. B, 2014, 23(3): 030601.
No Suggested Reading articles found!