Special Issue:
Featured Column — INSTRUMENTATION AND MEASUREMENT
|
INSTRUMENTATION AND MEASUREMENT |
Prev
Next
|
|
|
A cryogenic radio-frequency ion trap for a 40Ca+ optical clock |
Mengyan Zeng(曾孟彦)1,2,3,†, Yao Huang(黄垚)2,3,†, Baolin Zhang(张宝林)2,3, Zixiao Ma(马子晓)2,3,4, Yanmei Hao(郝艳梅)2,3,4, Ruming Hu(胡如明)2,3,4, Huaqing Zhang(张华青)2,3, Hua Guan(管桦)2,3,5,‡, and Kelin Gao(高克林)2,3,§ |
1 Huazhong University of Science and Technology, Wuhan 430074, China; 2 State Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics, Innovation Academy for Precision Measurement Science and Technology, Chinese Academy of Sciences, Wuhan 430071, China; 3 Key Laboratory of Atomic Frequency Standards, Innovation Academy for Precision Measurement Science and Technology, Chinese Academy of Sciences, Wuhan 430071, China; 4 University of Chinese Academy of Sciences, Beijing 100049, China; 5 Wuhan Institute of Quantum Technology, Wuhan 430206, China |
|
|
Abstract A liquid-nitrogen cryogenic 40Ca+ optical clock is presented that is designed to greatly reduce the blackbody radiation (BBR) shift. The ion trap, the electrodes and the in-vacuum BBR shield are installed under the liquid-nitrogen container, keeping the ions in a cryogenic environment at liquid-nitrogen temperature. Compared with the first design in our previous work, many improvements have been made to increase the performance. The liquid-nitrogen maintenance time has been increased by about three times by increasing the volume of the liquid-nitrogen container; the trap position recovery time after refilling the liquid-nitrogen container has been decreased more than three times by using a better fixation scheme in the liquid-nitrogen container; and the magnetic field noise felt by the ions has been decreased more than three times by a better design of the magnetic shielding system. These optimizations make the scheme for reducing the BBR shift uncertainty of liquid-nitrogen-cooled optical clocks more mature and stable, and develop a stable lock with a narrower linewidth spectrum, which would be very beneficial for further reducing the overall systematic uncertainty of optical clocks.
|
Received: 10 February 2023
Revised: 23 March 2023
Accepted manuscript online: 28 March 2023
|
PACS:
|
37.10.Ty
|
(Ion trapping)
|
|
07.20.Mc
|
(Cryogenics; refrigerators, low-temperature detectors, and other low-temperature equipment)
|
|
95.55.Sh
|
(Auxiliary and recording instruments; clocks and frequency standards)
|
|
Fund: This work was supported by the National Key R&D Program of China (Grant Nos. 2022YFB3904001 and 2018YFA0307500), the National Natural Science Foundation of China (Grant Nos. 12121004 and 12022414), Strategic Priority Research Program of the Chinese Academy of Sciences (Grant No. XDB21030100), CAS Project for Young Scientists in Basic Research (Grant No. YSBR- 055), CAS Youth Innovation Promotion Association (Grant Nos. Y201963 and Y2022099), the Natural Science Foundation of Hubei Province (Grant No. 2022CFA013), and the Interdisciplinary Cultivation Project of the Innovation Academy for Precision Measurement of Science and Technology (Grant No. S21S2201). |
Corresponding Authors:
Hua Guan, Kelin Gao
E-mail: guanhua@apm.ac.cn;klgao@apm.ac.cn
|
Cite this article:
Mengyan Zeng(曾孟彦), Yao Huang(黄垚), Baolin Zhang(张宝林), Zixiao Ma(马子晓), Yanmei Hao(郝艳梅), Ruming Hu(胡如明), Huaqing Zhang(张华青), Hua Guan(管桦), and Kelin Gao(高克林) A cryogenic radio-frequency ion trap for a 40Ca+ optical clock 2023 Chin. Phys. B 32 113701
|
[1] Huang Y, Zhang B L, Zeng M Y, Hao Y M, Ma Z X, Zhang H Q, Guan H, Chen Z, Wang M and Gao K L 2022 Phys. Rev. Appl. 17 034041 [2] Brewer S M, Chen J S, Hankin A M, Clements E R, Chou C W, Wineland D J, Hume D B and Leibrandt D R 2019 Phys. Rev. Lett. 123 033201 [3] Huntemann N, Sanner C, Lipphardt B, Tamm C and Peik E 2016 Phys. Rev. Lett. 116 063001 [4] Dubé P, Madej A A, Zhou Z and Bernard J E 2013 Phys. Rev. A 87 023806 [5] McGrew W F, Zhang X, Fasano R J, Schäffer S A, Beloy K, Nicolodi D, Brown R C, Hinkley N, Milani G, Schioppo M, Yoon T H and Ludlow A D 2018 Nature 564 87 [6] Ushijima I, Takamoto M, Das M, Ohkubo T and Katori H 2015 Nature Photonics 9 185 [7] Bothwell T, Kedar D, Oelker E, Robinson J M, Bromley S L, Tew W L, Ye J and Kennedy C J 2019 Metrologia 56 065004 [8] Lu B K, Sun Z, Yang T, Lin Y G, Wang Q, Li Y, Meng F, Lin B K, Li T C and Fang Z J 2022 Chin. Phys. Lett. 39 080601 [9] Riehle F, Gill P, Arias F and Robertsson L 2018 Metrologia 55 188 [10] Gill P 2016 J. Phys.:Conf. Ser. 723 012053 [11] Safronova M S, Budker D, DeMille D, Kimball D F J, Derevianko A and Clark C W 2018 Rev. Mod. Phys. 90 025008 [12] Rafac R J, Young B C, Beall J A, Itano W M, Wineland D J and Bergquist J C 2000 Phys. Rev. Lett. 85 2462 [13] King S A, Spieβ L J, Micke P, Wilzewski A, Leopold T, Benkler E, Lange R, Huntemann N, Surzhykov A, Yerokhin V A, López-Urrutia J R C and Schmidt P O 2022 Nature 611 43 [14] Ohmae N, Bregolin F, Nemitz N and Katori H 2020 Opt. Express 28 15112 [15] Golovizin A, Fedorova E, Tregubov D, Sukachev D, Khabarova K, Sorokin V and Kolachevsky N 2019 Nat. Commun. 10 1724 [16] Ohtsubo N, Li Y, Nemitz N, Hachisu H, Matsubara K, Ido T and Hayasaka K 2020 Opt. Lett. 45 5950 [17] Arnold K J, Kaewuam R, Roy A, Tan T R and Barrett M D 2018 Nat. Commun. 9 1650 [18] Derevianko A, Dzuba V A and Flambaum V V 2012 Phys. Rev. Lett. 109 180801 [19] Liang S Y, Zhang T X, Guan H, Lu Q F, Xiao J, Chen S L, Huang Y, Zhang Y H, Li C B, Zou Y M, Li J G, Yan Z C, Derevianko A, Zhan M S, Shi T Y and Gao K L 2021 Phys. Rev. A 103 022804 [20] Schmidt P O, Rosenband T, Langer C, Itano W M, Bergquist J C and Wineland D J 2005 Science 309 749 [21] Schwarz M, Versolato O O, Windberger A, Brunner F R, Balance T, Eberle S N, Ullrich J, Schmidt P O, Hansen A K, Gingell A D, Drewsen M and López-Urrutia J C R 2012 Rev. Sci. Instrum. 83 083115 [22] Repp J, Böhm C, López-Urrutia J R C, Dörr A, Eliseev S, George S, Goncharov M, Novikov Y N, Roux C, Sturm S, Ulmer S and Blaum K 2012 Appl. Phys. B 107 983 [23] Leopold T, King S A, Micke P, Bautista-Salvador A, Heip J C, Ospelkaus C, López-Urrutia J R C and Schmidt P O 2019 Rev. Sci. Instrum. 90 073201 [24] Pagano G, Hess P W, Kaplan H B, Tan W L, Richerme P, Becker P, Kyprianidis A, Zhang J, Birckelbaw E, Hernandez M R, Wu Y and Monroe C 2019 Quantum Sci. Technol. 4 014004 [25] Rosenband T, Hume D B, Schmidt P O, Chou C W, Brusch A, Lorini L, Oskay W H, Drullinger R E, Fortier T M, Stalnaker J E, Diddams S A, Swann W C, Newbury N R, Itano W M, Wineland D J and Bergquist J C 2008 Science 319 1808 [26] Liu P L, Huang Y, Bian W, Shao H, Qian Y, Guan H and Gao K L 2014 Chin. Phys. Lett. 31 113702 [27] Huang Y, Guan H, Liu P, Bian W, Ma L S, Liang K, Li T C and Gao K L 2016 Phys. Rev. Lett. 116 013001 [28] Huang Y, Guan H, Zeng M Y, Tang L Y and Gao K L 2019 Phys. Rev. A 99 011401 [29] Porsev S G and Derevianko A 2006 Phys. Rev. A 74 020502 [30] Angstmann E, Dzuba V and Flambaum V 2006 Phys. Rev. Lett. 97 040802 [31] Micke P, Stark J, King S A, Leopold T, Pfeifer T, Schmöger L, Schwarz M, Spieβ L J, Schmidt P O and López-Urrutia J R C 2019 Rev. Sci. Instrum. 90 065104 [32] Guan H, Zhang B L, Zhang H Q, Huang Y, Hao Y M, Zeng M Y and Gao K L 2021 AVS Quantum Sci. 3 044701 [33] Shao H, Wang M, Zeng M Y, Guan H and Gao K L 2018 J. Phys. Commun. 2 095019 [34] Poitzsch M E, Bergquist J C, Itano W M and Wineland D J 1996 Rev. Sci. Instrum. 67 129 [35] Brandl M F, Mourik M W, Postler L, Nolf A, Lakhmanskiy K, Paiva R R, Möller S, Daniilidis N, Häffner H, Kaushal V, Ruster T, Warschburger C, Kaufmann H, Poschinger U G, Schmidt-Kaler F, Schindler P, Monz T and Blatt R 2016 Rev. Sci. Instrum. 87 113103 [36] Beloy K, Hinkley N, Phillips N B, Sherman J A, Schioppo M, Lehman J, Feldman A, Hanssen L M, Oates C W and Ludlow A D 2014 Phys. Rev. Lett. 113 260801 [37] Chen J S, Brewer S M, Chou C W, Wineland D J, Leibrandt D R and Hume D B 2017 Phys. Rev. Lett. 118 053002 [38] Berkeland D J, Miller J D, Bergquist J C, Itano W M and Wineland D J 1998 J. Appl. Phys. 83 5025 [39] Huang Y, Liu Q, Cao J, Ou B Q, Liu P L, Guan H, Huang X R and Gao K L 2011 Phys. Rev. A 84 053841 [40] Margolis H S, Barwood G P, Huang G, Klein H A, Lea S N, Szymaniec K and Gill P 2004 Science 306 1355 [41] Madej A A, Dubé P, Zhou Z, Bernard J E and Gertsvolf M 2012 Phys. Rev. Lett. 109 203002 [42] Tommaseo, Pfeil T, Revalde G, Werth G, Indelicato P and Desclaux J 2003 Eur. Phys. J. D 25 113 [43] Ozeri R 2011 Contemp. Phys. 52 531 [44] Chwalla M, Benhelm J, Kim K, Kirchmair G, Monz T, Riebe M, Schindler P, Villar A S, Hänsel W, Roos C F, Blatt R, Abgrall M, Santarelli G, Rovera G D and Laurent P 2009 Phys. Rev. Lett. 102 023002 [45] Shao H, Huang Y, Guan H, Li C B, Shi T Y and Gao K L 2017 Phys. Rev. A 95 053415 [46] Dehmelt H G 1982 IEEE T. Instrum. Meas. 31 83 |
No Suggested Reading articles found! |
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
Altmetric
|
blogs
Facebook pages
Wikipedia page
Google+ users
|
Online attention
Altmetric calculates a score based on the online attention an article receives. Each coloured thread in the circle represents a different type of online attention. The number in the centre is the Altmetric score. Social media and mainstream news media are the main sources that calculate the score. Reference managers such as Mendeley are also tracked but do not contribute to the score. Older articles often score higher because they have had more time to get noticed. To account for this, Altmetric has included the context data for other articles of a similar age.
View more on Altmetrics
|
|
|