Please wait a minute...
Chin. Phys. B, 2023, Vol. 32(11): 117802    DOI: 10.1088/1674-1056/ad028e
Special Issue: SPECIAL TOPIC — Celebrating the 100th Anniversary of Physics Discipline of Northwest University
SPECIAL TOPIC—Celebrating the 100th Anniversary of Physics Discipline of Northwest University Prev   Next  

Temperature-dependent photoluminescence of lead-free cesium tin halide perovskite microplates

Jiayu Tan(谭佳雨), Yixuan Zhou(周译玄), De Lu(卢德), Xukun Feng(冯旭坤), Yuqi Liu(刘玉琪), Mengen Zhang(张蒙恩), Fangzhengyi Lu(卢方正一), Yuanyuan Huang(黄媛媛), and Xinlong Xu(徐新龙)
Shaanxi Joint Laboratory of Graphene, State Key Laboratory of Photon-Technology in Western China Energy, International Collaborative Center on Photoelectric Technology and Nano Functional Materials, Institute of Photonics & Photon-Technology, School of Physics, Northwest University, Xi'an 710069, China
Abstract  Tin halide perovskites recently have attracted extensive research attention due to their similar electronic and band structures but non-toxicity compared with their lead analogues. In this work, we prepare high-quality CsSnX3 (X=Br, I) microplates with lateral sizes of around 1-4 μ m by chemical vapor deposition and investigate their low-temperature photoluminescence (PL) properties. A remarkable splitting of PL peaks of the CsSnBr3 microplate is observed at low temperatures. Besides the possible structural phase transition at below 70 K, the multi-peak fittings using Gauss functions and the power-dependent saturation phenomenon suggest that the PL could also be influenced by the conversion from the emission of bound excitons into free excitons. With the increase of temperature, the peak position shows a blueshift tendency for CsSnI3, which is governed by thermal expansion. However, the peak position of the CsSnBr3 microplate exhibits a transition from redshift to blueshift at ~ 160 K. The full width at half maximum of CsSnX3 broadens with increasing temperature, and the fitting results imply that longitudinal optical phonons dominate the electron-phonon coupling and the coupling strength is much more robust in CsSnBr3 than in CsSnI3. The PL intensity of CsSnX3 microplates is suppressed due to the enhanced non-radiative relaxation and exciton dissociation competing with radiative recombination. According to the Arrhenius law, the exciton binding energy of CsSnBr3 is ~ 38.4 meV, slightly smaller than that of CsSnI3.
Keywords:  cesium tin halide perovskite      temperature-dependent photoluminescence      chemical vapor deposition      microplate  
Received:  04 July 2023      Revised:  13 September 2023      Accepted manuscript online:  12 October 2023
PACS:  78.20.-e (Optical properties of bulk materials and thin films)  
  78.55.-m (Photoluminescence, properties and materials)  
Fund: Project supported by the National Natural Science Foundation of China (Grant Nos. 11974279, 12074311, 12004310, and 12261141662).
Corresponding Authors:  Yixuan Zhou     E-mail:  yxzhou@nwu.edu.cn;xlxuphy@nwu.edu.cn

Cite this article: 

Jiayu Tan(谭佳雨), Yixuan Zhou(周译玄), De Lu(卢德), Xukun Feng(冯旭坤), Yuqi Liu(刘玉琪), Mengen Zhang(张蒙恩), Fangzhengyi Lu(卢方正一), Yuanyuan Huang(黄媛媛), and Xinlong Xu(徐新龙) Temperature-dependent photoluminescence of lead-free cesium tin halide perovskite microplates 2023 Chin. Phys. B 32 117802

[1] Etgar L, Gao P, Xue Z, Peng Q, Chandiran A K, Liu B, Nazeeruddin M K and Gratzel M 2012 J. Am. Chem. Soc. 134 17396
[2] Ball J M, Lee M M, Hey A and Snaith H J 2013 Energy Environ. Sci. 6 1739
[3] Bi D, Yang L, Boschloo G, Hagfeldt A and Johansson E M 2013 J. Phys. Chem. Lett. 4 1532
[4] Heo J H, Im S H, Noh J H, Mandal T N, Lim C S, Chang J A, Lee Y H, Kim H J, Sarkar A, Nazeeruddin M K, Grätzel M and Seok S I 2013 Nat. Photonics 7 486
[5] Kim H S, Lee J W, Yantara N, Boix P P, Kulkarni S A, Mhaisalkar S, Gratzel M and Park N G 2013 Nano Lett. 13 2412
[6] Laban W A and Etgar L 2013 Energy Environ. Sci. 6 3249
[7] Jishi R A, Ta O B and Sharif A A 2014 J. Phys. Chem. C 118 28344
[8] Yang W S, Park B W, Jung E H, Jeon N J, Kim Y C, Lee D U, Shin S S, Seo J, Kim E K, Noh J H and Seok S I 2017 Science 356 1376
[9] Liu X, Wu T, Luo X, Wang H, Furue M, Bessho T, Zhang Y, Nakazaki J, Segawa H and Han L 2021 ACS Energy Lett. 7 425
[10] Cao Y, Wang N, Tian H, et al. 2018 Nature 562 249
[11] Dou L, Yang Y M, You J, Hong Z, Chang W H, Li G and Yang Y 2014 Nat. Commun. 5 5404
[12] Mo Q, Yu J, Chen C, Cai W, Zhao S, Li H and Zang Z 2022 Laser Photonics Rev. 16
[13] Fu Y, Zhu H, Chen J, Hautzinger M P, Zhu X Y and Jin S 2019 Nat. Rev. Mater. 4 169
[14] Fu Y, Zhu H, Stoumpos C C, Ding Q, Wang J, Kanatzidis M G, Zhu X and Jin S 2016 ACS Nano 10 7963
[15] Zhao S, Jia Z, Huang Y, Qian Q, Lin Q and Zang Z 2016 Nat. Photonics 10 585
[17] Gao Y, Pan Y, Zhou F, Niu G and Yan C 2021 J. Mater. Chem. A 9 11931
[18] De Wolf S, Holovsky J, Moon S J, Loper P, Niesen B, Ledinsky M, Haug F J, Yum J H and Ballif C 2014 J. Phys. Chem. Lett. 5 1035
[19] Shi D, Adinolfi V, Comin R, Yuan M, Alarousu E, Buin A, Chen Y, Hoogland S, Rothenberger A, Katsiev K, Losovyj Y, Zhang X, Dowben P A, Mohammed O F, Sargent E H and Bakr O M 2015 Science 347 519
[20] Zhu H, Fu Y, Meng F, Wu X, Gong Z, Ding Q, Gustafsson M V, Trinh M T, Jin S and Zhu X Y 2015 Nat. Mater. 14 636
[21] Protesescu L, Yakunin S, Bodnarchuk M I, Krieg F, Caputo R, Hendon C H, Yang R X, Walsh A and Kovalenko M V 2015 Nano Lett. 15 3692
[22] Faheem M B, Khan B, Feng C, Farooq M U, Raziq F, Xiao Y and Li Y 2019 ACS Energy Lett. 5 290
[23] Duan C, Zhao Z and Yuan L 2021 IEEE J. Photovolt. 11 1126
[24] Chen J, Luo Z, Fu Y, Wang X, Czech K J, Shen S, Guo L, Wright J C, Pan A and Jin S 2019 ACS Energy Lett. 4 1045
[25] Kang C, Rao H, Fang Y, Zeng J, Pan Z and Zhong X 2021 Angew. Chem. Int. Ed. 60 660
[26] Wang L M, Chen J K, Zhang B B, Liu Q, Zhou Y, Shu J, Wang Z, Shirahata N, Song B, Mohammed O F, Bakr O M and Sun H T 2021 Nanoscale 13 16726
[27] Jellicoe T C, Richter J M, Glass H F, Tabachnyk M, Brady R, Dutton S E, Rao A, Friend R H, Credgington D, Greenham N C and Bohm M L 2016 J. Am. Chem. Soc. 138 2941
[28] Han M, Sun J, Peng M, Han N, Chen Z, Liu D, Guo Y, Zhao S, Shan C, Xu T, Hao X, Hu W and Yang Z X 2019 J. Phys. Chem. C 123 17566
[29] Peedikakkandy L and Bhargava P 2016 RSC Adv. 6 19857
[30] Mahesh K P O, Chang C Y, Hong W L, Wen T H, Lo P H, Chiu H Z, Hsu C L, Horng S F and Chao Y C 2020 RSC Adv. 10 37161
[31] Huang L Y and Lambrecht W R L 2013 Phys. Rev. B 88 165203
[32] Wu Z Y, Zhuang J H, Lin Y T, Chou Y H, Wu P C, Wu C L, Chen P and Hsu H C 2021 ACS Nano 15 19613
[33] Xing G, Kumar M H, Chong W K, Liu X, Cai Y, Ding H, Asta M, Gratzel M, Mhaisalkar S, Mathews N and Sum T C 2016 Adv. Mater. 28 8191
[34] Gupta S, Bendikov T, Hodes G and Cahen D 2016 ACS Energy Lett. 1 1028
[35] Song T B, Yokoyama T, Aramaki S and Kanatzidis M G 2017 ACS Energy Lett. 2 897
[36] Moghe D, Wang L, Traverse C J, Redoute A, Sponseller M, Brown P R, Bulović V and Lunt R R 2016 Nano Energy 28 469
[37] Xu W L, Yuan H, Yang X Y, Zhang Y and Zheng M 2021 Physica E 134 114843
[38] O'donnell K P and Chen X 1991 Appl. Phys. Lett. 58 2924
[39] Fan H Y 1951 Phys. Rev. 82 900
[40] Varshni Y P 1967 Physica 34 149
[41] Rudin S and Reinecke T L 1990 Phys. Rev. B 41 3017
[42] Wright A D, Verdi C, Milot R L, Eperon G E, Perez-Osorio M A, Snaith H J, Giustino F, Johnston M B and Herz L M 2016 Nat. Commun. 7 11755
[43] Chen C, Hu X, Lu W, Chang S, Shi L, Li L, Zhong H and Han J B 2018 J. Phys. D:Appl. Phys. 51 045105
[44] Jiang D S, Jung H and Ploog K 1988 J. Appl. Phys. 64 1371
[45] Yu C, Chen Z J, Wang J, Pfenninger W, Vockic N, Kenney J T and Shum K 2011 J. Appl. Phys. 110 063526
[46] Wei K, Xu Z, Chen R, Zheng X, Cheng X and Jiang T 2016 Opt. Lett. 41 3821
[47] Wu K, Bera A, Ma C, Du Y, Yang Y, Li L and Wu T 2014 Phys. Chem. Chem. Phys. 16 22476
[48] Lee S M, Moon C J, Lim H, Lee Y, Choi M Y and Bang J 2017 J. Phys. Chem. C 121 26054
[49] Fang H H, Raissa R, Abdu-Aguye M, Adjokatse S, Blake G R, Even J and Loi M A 2015 Adv. Funct. Mater. 25 2378
[50] Wehrenfennig C, Liu M, Snaith H J, Johnston M B and Herz L M 2014 APL Mater. 2 081513
[51] Diab H, Trippe-Allard G, Ledee F, Jemli K, Vilar C, Bouchez G, Jacques V L, Tejeda A, Even J, Lauret J S, Deleporte E and Garrot D 2016 J. Phys. Chem. Lett. 7 5093
[52] Fabini D H, Laurita G, Bechtel J S, Stoumpos C C, Evans H A, Kontos A G, Raptis Y S, Falaras P, Van Der Ven A, Kanatzidis M G and Seshadri R 2016 J. Am. Chem. Soc. 138 11820
[53] Singh S, Kumar M, Jha P K, Jha P A and Singh P 2023 Europhys. Lett. 141 26001
[54] Mori M and Saito H 1986 J. Phys. C:Solid State Phys. 19 2391
[55] Gao L, Yadgarov L, Sharma R, Korobko R, Mccall K M, Fabini D H, Stoumpos C C, Kanatzidis M G, Rappe A M and Yaffe O 2021 Mater. Adv. 2 4610
[56] Korn T, Heydrich S, Hirmer M, Schmutzler J and Schüller C 2011 Appl. Phys. Lett. 99 102109
[57] Shum K, Chen Z, Qureshi J, Yu C, Wang J J, Pfenninger W, Vockic N, Midgley J and Kenney J T 2010 Appl. Phys. Lett. 96 221903
[58] Kontos A G, Kaltzoglou A, Arfanis M K, Mccall K M, Stoumpos C C, Wessels B W, Falaras P and Kanatzidis M G 2018 J. Phys. Chem. C 122 26353
[59] Allen P B and Cardona M 1983 Phys. Rev. B 27 4760
[60] Lautenschlager P, Allen P B and Cardona M 1985 Phys. Rev. B:Condens. Matter 31 2163
[61] Göbel A, Ruf T, Cardona M, Lin C T, Wrzesinski J, Steube M, Reimann K, Merle J C and Joucla M 1998 Phys. Rev. B 57 15183
[62] Vicena F 1955 Czechoslov. J. Phys. 5 499
[63] Keffer C, Hayes T M and Bienenstock A 1968 Phys. Rev. Lett. 21 1676
[64] Cardona M 2005 Solid State Commun. 133 3
[65] Lee J, Koteles E S and Vassell M O 1986 Phys. Rev. B 33 5512
[66] Sun S, Salim T, Mathews N, Duchamp M, Boothroyd C, Xing G, Sum T C and Lam Y M 2014 Energ. Environ. Sci. 7 399
[67] Yangui A, Pillet S, Mlayah A, Lusson A, Bouchez G, Triki S, Abid Y and Boukheddaden K 2015 J. Chem. Phys. 143 224201
[68] Fujisawa J I and Ishihara T 2004 Phys. Rev. B 70 205330
[69] Ishihara T, Takahashi J and Goto T 1990 Phys. Rev. B 42 11099
[1] Low-resistance ohmic contacts on InAlN/GaN heterostructures with MOCVD-regrown n+-InGaN and mask-free regrowth process
Jingshu Guo(郭静姝), Jiejie Zhu(祝杰杰), Siyu Liu(刘思雨), Jielong Liu(刘捷龙), Jiahao Xu(徐佳豪), Weiwei Chen(陈伟伟), Yuwei Zhou(周雨威), Xu Zhao(赵旭), Minhan Mi(宓珉瀚), Mei Yang(杨眉), Xiaohua Ma(马晓华), and Yue Hao(郝跃). Chin. Phys. B, 2023, 32(3): 037303.
[2] Growth behaviors and emission properties of Co-deposited MAPbI3 ultrathin films on MoS2
Siwen You(游思雯), Ziyi Shao(邵子依), Xiao Guo(郭晓), Junjie Jiang(蒋俊杰), Jinxin Liu(刘金鑫), Kai Wang(王凯), Mingjun Li(李明君), Fangping Ouyang(欧阳方平), Chuyun Deng(邓楚芸), Fei Song(宋飞), Jiatao Sun(孙家涛), and Han Huang(黄寒). Chin. Phys. B, 2023, 32(1): 017901.
[3] Monolayer MoS2 of high mobility grown on SiO2 substrate by two-step chemical vapor deposition
Jia-Jun Ma(马佳俊), Kang Wu(吴康), Zhen-Yu Wang(王振宇), Rui-Song Ma(马瑞松), Li-Hong Bao(鲍丽宏), Qing Dai(戴庆), Jin-Dong Ren(任金东), and Hong-Jun Gao(高鸿钧). Chin. Phys. B, 2022, 31(8): 088105.
[4] Characterization of the N-polar GaN film grown on C-plane sapphire and misoriented C-plane sapphire substrates by MOCVD
Xiaotao Hu(胡小涛), Yimeng Song(宋祎萌), Zhaole Su(苏兆乐), Haiqiang Jia(贾海强), Wenxin Wang(王文新), Yang Jiang(江洋), Yangfeng Li(李阳锋), and Hong Chen(陈弘). Chin. Phys. B, 2022, 31(3): 038103.
[5] Origin, characteristics, and suppression of residual nitrogen in MPCVD diamond growth reactor
Yan Teng(滕妍), Dong-Yang Liu(刘东阳), Kun Tang(汤琨), Wei-Kang Zhao(赵伟康), Zi-Ang Chen(陈子昂), Ying-Meng Huang(黄颖蒙), Jing-Jing Duan(段晶晶), Yue Bian(卞岳), Jian-Dong Ye(叶建东), Shun-Ming Zhu(朱顺明), Rong Zhang(张荣), You-Dou Zheng(郑有炓), and Shu-Lin Gu(顾书林). Chin. Phys. B, 2022, 31(12): 128106.
[6] Significant suppression of residual nitrogen incorporation in diamond film with a novel susceptor geometry employed in MPCVD
Weikang Zhao(赵伟康), Yan Teng(滕妍), Kun Tang(汤琨), Shunming Zhu(朱顺明), Kai Yang(杨凯), Jingjing Duan(段晶晶), Yingmeng Huang(黄颖蒙), Ziang Chen(陈子昂), Jiandong Ye(叶建东), and Shulin Gu(顾书林). Chin. Phys. B, 2022, 31(11): 118102.
[7] A simple method to synthesize worm-like AlN nanowires and its field emission studies
Qi Liang(梁琦), Meng-Qi Yang(杨孟骐), Chang-Hao Wang(王长昊), and Ru-Zhi Wang(王如志). Chin. Phys. B, 2021, 30(8): 087302.
[8] High-responsivity solar-blind photodetector based on MOCVD-grown Si-doped β-Ga2O3 thin film
Yu-Song Zhi(支钰崧), Wei-Yu Jiang(江为宇), Zeng Liu(刘增), Yuan-Yuan Liu(刘媛媛), Xu-Long Chu(褚旭龙), Jia-Hang Liu(刘佳航), Shan Li(李山), Zu-Yong Yan(晏祖勇), Yue-Hui Wang(王月晖), Pei-Gang Li(李培刚), Zhen-Ping Wu(吴真平), and Wei-Hua Tang(唐为华). Chin. Phys. B, 2021, 30(5): 057301.
[9] Effect of hydrogen content on dielectric strength of the silicon nitride film deposited by ICP-CVD
Yudong Zhang(张玉栋), Jiale Tang(唐家乐), Yongjie Hu(胡永杰), Jie Yuan(袁杰), Lulu Guan(管路路), Xingyu Li(李星雨), Hushan Cui(崔虎山), Guanghui Ding(丁光辉), Xinying Shi(石新颖), Kaidong Xu(许开东), and Shiwei Zhuang(庄仕伟). Chin. Phys. B, 2021, 30(4): 048103.
[10] Synthesis of flower-like WS2 by chemical vapor deposition
Jin-Zi Ding(丁金姿), Wei Ren(任卫), Ai-Ling Feng(冯爱玲), Yao Wang(王垚), Hao-Sen Qiao(乔浩森), Yu-Xin Jia(贾煜欣), Shuang-Xiong Ma(马双雄), and Bo-Yu Zhang(张博宇). Chin. Phys. B, 2021, 30(12): 126201.
[11] Understanding of impact of carbon doping on background carrier conduction in GaN
Zhenxing Liu(刘振兴), Liuan Li(李柳暗), Jinwei Zhang(张津玮), Qianshu Wu(吴千树), Yapeng Wang(王亚朋), Qiuling Qiu(丘秋凌), Zhisheng Wu(吴志盛), and Yang Liu(刘扬). Chin. Phys. B, 2021, 30(10): 107201.
[12] Continuous-wave operation of InAs/InP quantum dot tunable external-cavity laser grown by metal-organic chemical vapor deposition
Yan Wang(王岩), Shuai Luo(罗帅), Haiming Ji(季海铭), Di Qu(曲迪), and Yidong Huang(黄翊东). Chin. Phys. B, 2021, 30(1): 018106.
[13] Short-wavelength infrared InAs/GaSb superlattice hole avalanche photodiode
Jia-Feng Liu(刘家丰), Ning-Tao Zhang(张宁涛), Yan Teng(滕), Xiu-Jun Hao(郝修军), Yu Zhao(赵宇), Ying Chen(陈影), He Zhu(朱赫), Hong Zhu(朱虹), Qi-Hua Wu(吴启花), Xin Li(李欣), Bai-Le Chen(陈佰乐)§, and Yong Huang(黄勇). Chin. Phys. B, 2020, 29(11): 117301.
[14] Annealing-enhanced interlayer coupling interaction inGaS/MoS2 heterojunctions
Xiuqing Meng(孟秀清), Shulin Chen(陈书林), Yunzhang Fang(方允樟), Jianlong Kou(寇建龙). Chin. Phys. B, 2019, 28(7): 078101.
[15] Direct deposition of graphene nanowalls on ceramic powders for the fabrication of a ceramic matrix composite
Hai-Tao Zhou(周海涛), Da-Bo Liu(刘大博), Fei Luo(罗飞), Ye Tian(田野), Dong-Sheng Chen(陈冬生), Bing-Wei Luo(罗炳威), Zhang Zhou(周璋), Cheng-Min Shen(申承民). Chin. Phys. B, 2019, 28(6): 068102.
No Suggested Reading articles found!