Please wait a minute...
Chin. Phys. B, 2023, Vol. 32(11): 118702    DOI: 10.1088/1674-1056/acef05
Special Issue: SPECIAL TOPIC — Celebrating the 100th Anniversary of Physics Discipline of Northwest University
SPECIAL TOPIC—Celebrating the 100th Anniversary of Physics Discipline of Northwest University Prev   Next  

Reconstructing in vivo spatially offset Raman spectroscopy of human skin tissue using a GPU-accelerated Monte Carlo platform

Yun-He Zhang(张云鹤)1, Huan-Zheng Zhu(朱桓正)2, Yong-Jiang Dong(董泳江)2, Jia Zeng(曾佳)2,†, Xin-Peng Han(韩新鹏)3, Ivan A. Bratchenko4, Fu-Rong Zhang(张富荣)1, Si-Yuan Xu(许思源)1, and Shuang Wang(王爽)1,‡
1 Institute of Photonics and Photon-Technology, Northwest University, Xi'an, Shaanxi 710127, China;
2 Huawei Technologies Co., Ltd, Shenzhen, Guangdong 518129, China;
3 Cardiopulmonary Disease Department, Xi'an International Medical Center Hospital, Xi'an 710100, China;
4 Laser and Biotechnical Systems Department, Samara National Research University, Samara 443086, Russia
Abstract  As one type of spatially offset Raman spectroscopy (SORS), inverse SORS is particularly suited to in vivo biomedical measurements due to its ring-shaped illumination scheme. To explain inhomogeneous Raman scattering during in vivo inverse SORS measurements, the light-tissue interactions when excitation and regenerated Raman photons propagate in skin tissue were studied using Monte Carlo simulation. An eight-layered skin model was first built based on the latest transmission parameters. Then, an open-source platform, Monte Carlo eXtreme (MCX), was adapted to study the distribution of 785 nm excitation photons inside the model with an inverse spatially shifted annular beam. The excitation photons were converted to emission photons by an inverse distribution method based on excitation flux with spatial offsets Δs of 1 mm, 2 mm, 3 mm and 5 mm. The intrinsic Raman spectra from separated skin layers were measured by continuous linear scanning to improve the simulation accuracy. The obtained results explain why the spectral detection depth gradually increases with increasing spatial offset, and address how the intrinsic Raman spectrum from deep skin layers is distorted by the reabsorption and scattering of the superficial tissue constituents. Meanwhile, it is demonstrated that the spectral contribution from subcutaneous fat will be improved when the offset increases to 5 mm, and the highest detection efficiency for dermal layer spectral detection could be achieved when Δs = 2 mm. Reasonably good matching between the calculated spectrum and the measured in vivo inverse SORS was achieved, thus demonstrating great utility of our modeling method and an approach to help understand the clinical measurements.
Keywords:  Monte Carlo simulation      tissue optical model      spatially offset Raman spectroscopy  
Received:  16 May 2023      Revised:  20 July 2023      Accepted manuscript online:  11 August 2023
PACS:  87.10.Rt (Monte Carlo simulations)  
  87.16.A- (Theory, modeling, and simulations)  
  87.50.sg (Biophysical mechanisms of interaction)  
  87.64.kp (Raman)  
Fund: Project supported by the National Natural Science Foundation of China (Grant No. 61911530695) and the Key Research and Development Project of Shaanxi Province, China (Grant No. 2023-YBSF-671).
Corresponding Authors:  Jia Zeng, Shuang Wang     E-mail:  j.zeng@huawei.com;swang@nwu.edu.cn

Cite this article: 

Yun-He Zhang(张云鹤), Huan-Zheng Zhu(朱桓正), Yong-Jiang Dong(董泳江), Jia Zeng(曾佳), Xin-Peng Han(韩新鹏), Ivan A. Bratchenko, Fu-Rong Zhang(张富荣), Si-Yuan Xu(许思源), and Shuang Wang(王爽) Reconstructing in vivo spatially offset Raman spectroscopy of human skin tissue using a GPU-accelerated Monte Carlo platform 2023 Chin. Phys. B 32 118702

[1] Guicheteau J and Hopkins R 2018 Trends Analyt. Chem. 103 209
[4] Matousek P 2006 Appl. Spectrosc. 60 1341
[5] Demers J L H, Esmonde-White F W L, Esmonde-White K A, Morris M D and Pogue B W 2015 Biomed. Opt. Express 6 793
[6] Wang L H, Jacques S L and Zheng L Q 1995 Comput. Meth. Prog. Bio. 47 131
[7] Zhu C G and Liu Q 2013 J. Biomed. Opt. 18 050902
[8] Periyasamy V and Pramanik M 2017 IEEE Rev. Biomed. Eng. 10 122
[9] Deng Y and Meglinski I 2010 Acta Phys. Sin. 59 1396 (in Chinese)
[10] Zang P and Wang H J 2010 Chin. Phys. Lett. 27 038701
[11] Ge C Y, Wu Z S, Bai J and Gong L 2017 Chin. Phys. B 26 064201
[12] Alerstam E, Svensson T and Andersson-Engels S 2008 J. Biomed. Opt. 13 60504
[13] Fang Q Q and Boas D A 2009 Opt. Express 17 20178
[14] Vishwanath K, Pogue B and Mycek M A 2002 Phys. Med. Biol. 47 3387
[15] Keller M D, Wilson R H, Mycek M A and Mahadevan-Jansen A 2010 Appl. Spectris 64 607
[16] Vishwanath K and Mycek M A 2004 Opt. Lett. 29 1512
[17] Vishwanath K and Mycek M A 2005 Opt. Express 13 7466
[18] Wilson R H, Dooley K A, Morris M D and Mycek M A 2021 Anal. Chem. 93 6755
[20] Shimojo Y, Nishimura T, Hazama H, Ozawa T and Awazu K 2020 Biomed. Opt. Express 25
[21] Mishchenko M I and Tuchin V 2006 J. Biomed. Opt. 11 064026
[23] Yu L, Nina-Paravecino F, Kaeli D K and Fang Q 2018 J. Biomed. Opt. 23 010504
[24] Song D L, Qin J, Chen Y S, Wang H F, Ning T, Wang S and Li J 2021 J. Raman Spectrosc. 52 1428
[25] Ning T, Li H P, Chen Y S, Zhang B P, Zhang F R and Wang S 2021 Vib. Spectrosc. 115 103260
[26] Li J, Li J, Qin J, Zeng H S and Wang S 2020 Spectrochim. Acta A Mol. Biomol. 239 118372
[27] Song D L, Chen T M, Wang S, Chen S L, Li H P, Yu F, Zhang J Y and Zhang Z 2020 Analyst 145 626
[28] Wang S, Zhao J H, Lui H, He Q L, Bai J T and Zeng H S 2014 J. Biophoton. 7 703
[29] Wang S, Zhao J H, Lui H, He Q L and Zeng H S 2011 J. Photochem. Photobiol. B 105 183
[30] Meglinski V I and Matcher S J 2002 Physiol. Meas. 23 741
[31] Meglinski V I and Matcher S J 2003 Comput Meth. Prog. Bio. 70 179
[32] Chen R, Huang Z W, Lui H, Hamzavi I, McLean D I, Xie S S and Zeng H S 2007 J. Photochem. Photobiol. B 86 219
[33] Zeng H S, MacAulay C, McLean D I and Palcic B 1997 J. Photochem. Photobiol. B 38 234
[34] Fang Q Q and Boas D A 2009 Opt. Express 17 20178
[35] Dumont A P, Fang Q Q and Patil C A 2021 J. Biophotonics 14 e202000377
[36] Wang S, Zhao J H, Lui H, He Q L and Zeng H S 2010 Spectroscopy 24 577
[37] Fang Q Q and Yan S J 2014 J. Biophoton. 7 703
[39] Wang H Q, Huang N Y, Zhao J H, Lui H, Korbelik M and Zeng H S 2011 J. Raman Spectrosc. 42 160
[40] Huang Z W, McWilliams A, H. Lui, McLean D I, Lam S and Zeng H S 2003 Int. J. Cancer 107 1047
[41] Schulz H and Baranska M 2007 Vib. Spectrosc. 43 13
[42] Huang Z W, McWilliams A, Lam S, English J, McLean D I, Lui H and Zeng H S 2003 Int. J. Oncol. 23 649
[43] Lakshmi R J, Kartha V B, Murali Krishna C, R. Solomon J G, Ullas G and Uma Devi P 2002 Radiat. Res. 157 175
[44] Bhattacharjee T, Kumar P, Maru G, Ingle A and Krishna C M 2014 Lasers Med Sci. 29 325
[45] Malini R, Venkatakrishna K, Kurien J, Pai K M, Rao L, Kartha V B and Krishna C M 2006 Biopolymers 81 179
[46] Krasnikov I, Suhr C, Seteikin A, Meinhardt-Wollweber M and Roth B 2019 J. Opt. Soc. Am. A 36 877
[47] Dumont A P and Patil C A 2018 Biomedical Vibrational Spectroscopy 2018:Advances in Research and Industry, January 27-28,2018, San Francisco, United States, p. 22
[1] Simulation of space heavy-ion induced primary knock-on atoms in bipolar devices
Bin Zhang(张彬), Hao Jiang(姜昊), Xiao-Dong Xu(徐晓东), Tao Ying(应涛), Zhong-Li Liu(刘中利), Wei-Qi Li(李伟奇), Jian-Qun Yang(杨剑群), and Xing-Ji Li(李兴冀). Chin. Phys. B, 2024, 33(1): 016106.
[2] Grand canonical Monte Carlo simulation study of hydrogen storage by Li-decorated pha-graphene
Meng-Meng Zhang(张蒙蒙), Feng Zhang(张凤), Qiang Wu(吴强), Xin Huang(黄欣), Wei Yan(闫巍),Chun-Mei Zhao(赵春梅), Wei Chen(陈伟), Zhi-Hong Yang(杨志红),Yun-Hui Wang(王允辉), and Ting-Ting Wu(武婷婷). Chin. Phys. B, 2023, 32(6): 066803.
[3] Fragmentation dynamics of electron-impact double ionization of helium
Shiwei Liu(刘士炜), Difa Ye(叶地发), and Jie Liu(刘杰). Chin. Phys. B, 2023, 32(6): 063402.
[4] Effects of O2 adsorption on secondary electron emission properties
Zhao-Lun Yang(杨兆伦), Jing Yang(杨晶), Yun He(何鋆), Tian-Cun Hu(胡天存), Xin-Bo Wang(王新波), Na Zhang(张娜), Ze-Yu Chen(陈泽煜), Guang-Hui Miao(苗光辉), Yu-Ting Zhang(张雨婷), and Wan-Zhao Cui(崔万照). Chin. Phys. B, 2023, 32(4): 047901.
[5] Abnormal magnetic behavior of prussian blue analogs modified with multi-walled carbon nanotubes
Jia-Jun Mo(莫家俊), Pu-Yue Xia(夏溥越), Ji-Yu Shen(沈纪宇), Hai-Wen Chen(陈海文), Ze-Yi Lu(陆泽一), Shi-Yu Xu(徐诗语), Qing-Hang Zhang(张庆航), Yan-Fang Xia(夏艳芳), and Min Liu(刘敏). Chin. Phys. B, 2023, 32(4): 047503.
[6] Computational studies on magnetism and ferroelectricity
Ke Xu(徐可), Junsheng Feng(冯俊生), and Hongjun Xiang(向红军). Chin. Phys. B, 2022, 31(9): 097505.
[7] Steady-state and transient electronic transport properties of β-(AlxGa1-x)2O3/Ga2O3 heterostructures: An ensemble Monte Carlo simulation
Yan Liu(刘妍), Ping Wang(王平), Ting Yang(杨婷), Qian Wu(吴茜), Yintang Yang(杨银堂), and Zhiyong Zhang(张志勇). Chin. Phys. B, 2022, 31(11): 117305.
[8] Zero-field skyrmions in FeGe thin films stabilized through attaching a perpendicularly magnetized single-domain Ni layer
Zi-Bo Zhang(张子博) and Yong Hu(胡勇). Chin. Phys. B, 2021, 30(7): 077503.
[9] Monte Carlo simulations of electromagnetically induced transparency in a square lattice of Rydberg atoms
Shang-Yu Zhai(翟尚宇) and Jin-Hui Wu(吴金辉). Chin. Phys. B, 2021, 30(7): 074206.
[10] Emergent O(4) symmetry at the phase transition from plaquette-singlet to antiferromagnetic order in quasi-two-dimensional quantum magnets
Guangyu Sun(孙光宇), Nvsen Ma(马女森), Bowen Zhao(赵博文), Anders W. Sandvik, and Zi Yang Meng(孟子杨). Chin. Phys. B, 2021, 30(6): 067505.
[11] Correlated insulating phases in the twisted bilayer graphene
Yuan-Da Liao(廖元达), Xiao-Yan Xu(许霄琰), Zi-Yang Meng(孟子杨), and Jian Kang(康健). Chin. Phys. B, 2021, 30(1): 017305.
[12] Tunable deconfined quantum criticality and interplay of different valence-bond solid phases
Bowen Zhao(赵博文), Jun Takahashi, Anders W. Sandvik. Chin. Phys. B, 2020, 29(5): 057506.
[13] Magnetic properties of La2CuMnO6 double perovskite ceramic investigated by Monte Carlo simulations
S Mtougui, I EL Housni, N EL Mekkaoui, S Ziti, S Idrissi, H Labrim, R Khalladi, L Bahmad. Chin. Phys. B, 2020, 29(5): 056101.
[14] Two types of highly efficient electrostatic traps for single loading or multi-loading of polar molecules
Bin Wei(魏斌), Hengjiao Guo(郭恒娇), Yabing Ji(纪亚兵), Shunyong Hou(侯顺永), Jianping Yin(印建平). Chin. Phys. B, 2020, 29(4): 043701.
[15] Phase transition of DNA compaction in confined space: Effects of macromolecular crowding are dominant
Erkun Chen(陈尔坤), Yangtao Fan(范洋涛), Guangju Zhao(赵光菊), Zongliang Mao(毛宗良), Haiping Zhou(周海平), Yanhui Liu(刘艳辉). Chin. Phys. B, 2020, 29(1): 018701.
No Suggested Reading articles found!