ELECTROMAGNETISM, OPTICS, ACOUSTICS, HEAT TRANSFER, CLASSICAL MECHANICS, AND FLUID DYNAMICS |
Prev
Next
|
|
|
Optical chirality induced by spin-orbit interaction of light in a tightly focused Laguerre-Gaussian beam |
Mingchao Zhu(朱明超)1, Shenggui Fu(付圣贵)1, and Zhongsheng Man(满忠胜)1,2,† |
1 School of Physics and Optoelectronic Engineering, Shandong University of Technology, Zibo 255000, China; 2 Collaborative Innovation Center of Light Manipulations and Application, Shandong Normal University, Jinan 250358, China |
|
|
Abstract Optical chirality is one of the important and fundamental dynamic properties of light besides energy, momentum, and angular momentum. The quantification of electromagnetic chirality has been conceptualized only recently. Now, it is well known that for paraxial plane waves of light, the optical chirality is proportional to the ellipticity of the polarization ellipse, i.e., completely independent of the phase distribution. Here it is shown that optical vortex and state of polarization of the source paraxial field both have contributions to the optical chirality of the nonparaxial field generated by tightly focused Laguerre-Gaussian (LG) beam, which is in Stark contrast to the paraxial plane wave of light known from classical optics. The physical reason is the redistribution of local electromagnetic polarization in three dimensions associated with spin-orbit interaction.
|
Received: 21 June 2023
Revised: 31 July 2023
Accepted manuscript online: 14 August 2023
|
PACS:
|
42.25.Fx
|
(Diffraction and scattering)
|
|
11.30.Rd
|
(Chiral symmetries)
|
|
67.30.hj
|
(Spin dynamics)
|
|
71.70.Ej
|
(Spin-orbit coupling, Zeeman and Stark splitting, Jahn-Teller effect)
|
|
Fund: Project supported by the National Natural Science Foundation of China (Grant No. 12074224) and the Natural Science Foundation of Shandong Province, China (Grant Nos. ZR2021YQ02 and ZR2020MA087). |
Corresponding Authors:
Zhongsheng Man
E-mail: zsman@sdut.edu.cn
|
Cite this article:
Mingchao Zhu(朱明超), Shenggui Fu(付圣贵), and Zhongsheng Man(满忠胜) Optical chirality induced by spin-orbit interaction of light in a tightly focused Laguerre-Gaussian beam 2023 Chin. Phys. B 32 114202
|
[1] Barron L D 2012 Chirality 24 879 [2] Efrati E and Irvine W T M 2014 Phys. Rev. X 4 011003 [3] Fernandez-Corbaton I, Fruhnert M and Rockstuhl C 2016 Phys. Rev. X 6 031013 [4] Tang Y and Cohen A E 2010 Phys. Rev. Lett. 104 163901 [5] Bliokh K Y and Nori F 2011 Phys. Rev. A 83 021803 [6] Schäferling M, Dregely D, Hentschel M and Giessen H 2012 Phys. Rev. X 2 031010 [7] Coles M and Andrews D L 2012 Phys. Rev. A 85 063810 [8] Gorodetski Y, Drezet A, Genet C and Ebbesen T W 2013 Phys. Rev. Lett. 110 203906 [9] Ding K, Ng J, Zhou L and Chan C T 2014 Phys. Rev. A 89 063825 [10] Vázquez-Lozano J E and Martínez A 2018 Phys. Rev. Lett. 121 043901 [11] Yang D, Li Y, Deng D, Chen Q, Zhang Y, Liu Y, Gao J and Sun M 2018 Opt. Lett. 43 4594 [12] Forbes K A and Andrews D L 2018 Opt. Lett. 43 435 [13] Hu H, Gan Q and Zhan Q 2019 Phys. Rev. Lett. 122 223901 [14] Machinnon N 2019 J. Opt. 21 125402 [15] Mun J, Kim M, Yang Y, Badloe T, Ni J, Chen Y, Qiu C and Rho J 2020 Light:Sci. & Appl. 9 139 [16] Li M, Yan S, Zhang Y and Yao B 2020 Nanoscale 12 15453 [17] Yang D, Li C, Yao Z, Huang X, Li Y, Jin P and Lin J 2020 Phys. Rev. Appl. 14 014066 [18] Zhu T, Shi Y, Ding W, Tsai D P, Cao T, Liu A Q, Nieto-Vesperinas M, Sáenz J J, Wu P C and Qiu C 2020 Phys. Rev. Lett. 125 043901 [19] Forbes K A and Jones G A 2021 J. Opt. 23 115401 [20] Koksal K, Babiker M, Lembessis V E and Yuan J 2021 Opt. Commun. 490 126907 [21] Nechayev S, Eismann J S, Alaee R, Karimi E, Boyd R W and Banzer P 2021 Phys. Rev. A 103 L031501 [22] Chen W, Yang Q, Chen Y and Liu W 2021 Phys. Rev. Lett. 126 253901 [23] Forbes K A and Andrews D L 2021 J. Phys. Photon. 3 022007 [24] Forbes K A and Jones G A 2021 Phys. Rev. A 103 053515 [25] Zhu M, Fu S and Man Z 2022 Optik 262 169278 [26] Lipkin D 1964 J. Math. Phys. 5 696 [27] Bliokh K Y, Bekshaev A Y and Nori F 2014 Nat. Commun. 5 3300 [28] Aiello A, Banzer P, Neugebauer M and Leuchs G 2015 Nat. Photon. 9 789 [29] Neugebauer M, Bauer T, Aiello A and Banzer P 2015 Phys. Rev. Lett. 114 063901 [30] Bauer T, Neugebauer M, Leuchs G and Banzer P 2016 Phys. Rev. Lett. 117 013601 [31] Neugebauer M, Eismann J S, Bauer T and Banzer P 2018 Phys. Rev. X 8 021042 [32] Pan Y, Gao X, Zhang G, Li Y, Tu C and Wang H 2019 APL Photon. 4 096102 [33] Meng P, Man Z, Konijnenberg A P and Urbach H P 2019 Opt. Express 27 35336 [34] Zhang S, Fu S, Zhang H, Ge X, Bai Z, Lyu Y, Zhao R and Man Z 2019 Opt. Express 27 33621 [35] Man Z, Dou X and Urbach H P 2020 Opt. Commun. 458 124790 [36] Eismann J S, Nicholls L H, Roth D J, Alonso M A, Banzer P, Rodríguez-Fortuño F J, Zayats A V, Nori F and Bliokh K Y 2021 Nat. Photon. 15 156 [37] Zhang X, Shen B, Zhu Z, Rui G, He J, Cui Y and Gu B 2020 Opt. Express 30 5121 [38] Man Z, Zhang Y and Fu S 2022 Opt. Express 30 31298 [39] Cameron R P, Barnett S M and Yao A M 2012 New J. Phys. 14 053050 [40] Barnett S M, Cameron R P and Yao A M 2012 Phys. Rev. A 86 013845 [41] Bliokh K Y, Bekshaev A Y and Nori F 2013 New J. Phys. 15 033026 [42] Allen L, Beijersbergen M W, Spreeuw R J C and Woerdman J P 1992 Phys. Rev. A 45 8185 [43] Zhao Y, Edgar J S, Jeffries G D M, McGloin D and Chiu D T 2007 Phys. Rev. Lett. 99 073901 [44] Man Z, Xi Z, Yuan X, Burge R E and Urbach H P 2020 Phys. Rev. Lett. 124 103901 [45] Bliokh K Y, Ostrovskaya E A, Alonso M A, Rodríguez-Herrera O G, Lara D and Dainty C 2011 Opt. Express 19 26132 [46] Haefner D, Sukhov S and Dogariu A 2009 Phys. Rev. Lett. 102 123903 [47] Gorodetski Y, Niv A, Kleiner V and Hasman E 2008 Phys. Rev. Lett. 101 043903 [48] O'Connor D, Ginzburg P, Rodríguez-Fortuño F J, Wurtz G A and Zayats A V 2014 Nat. Commun. 5 5327 [49] Zambrana-Puyalto X, Vidal X and Molina-Terriza G 2014 Nat. Commun. 5 4922 [50] Garoli D, Zilio P, Gorodetski Y, Tantussi F and De Angelis F 2016 Sci. Rep. 6 29547 [51] Forbes K A 2020 Phys. Rev. A 105 023524 [52] Milione G, Sztul H I, Nolan D A and Alfano R R 2011 Phys. Rev. Lett. 107 053601 [53] Ren Z, Kong L, Li S, Qian S, Li Y, Tu C and Wang H 2015 Opt. Express 23 26586 [54] Man Z, Dou X and Fu S 2019 Opt. Lett. 44 427 [55] Man Z, Meng P and Fu S 2020 Opt. Lett. 45 37 [56] Zhu M, Fu S and Man Z 2022 Opt. Express 30 41048 [57] Zou C, Huang Q and Man Z 2023 Opt. Commun. 530 129153 [58] Born M and Wolf E 1999 Principles of Optics, 7th edn. (Cambridge:Cambridge University Press) pp. 31-33 [59] Richards B and Wolf E 1959 Proc. R. Soc. Lond. A 253 358 [60] Du L, Man Z, Zhang Y, Min C, Zhu S and Yuan X 2017 Sci. Rep. 7 41001 |
No Suggested Reading articles found! |
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
Altmetric
|
blogs
Facebook pages
Wikipedia page
Google+ users
|
Online attention
Altmetric calculates a score based on the online attention an article receives. Each coloured thread in the circle represents a different type of online attention. The number in the centre is the Altmetric score. Social media and mainstream news media are the main sources that calculate the score. Reference managers such as Mendeley are also tracked but do not contribute to the score. Older articles often score higher because they have had more time to get noticed. To account for this, Altmetric has included the context data for other articles of a similar age.
View more on Altmetrics
|
|
|