High stability and low noise laser-diode end-pumped Nd: YAG ceramic passively Q-switched laser at 1123 nm based on a Ti3C2Tx-PVA saturable absorber
Jia-Le Yan(闫佳乐)1, Ben Li(李奔)1, Guo-Zhen Wang(王国珍)1, Shun-Yu Yang(杨顺宇)1, Bao-Le Lu(陆宝乐)1,2, and Yang Bai(白杨)1,2,†
1 Institute of Photonics & Photon-Technology, Northwest University, Xi'an 710127, China; 2 Shaanxi Engineering Technology Research Center for Solid State Lasers and Application, Xi'an 710127, China
Abstract We report a high repetition frequency, high power stability and low laser noise laser-diode (LD) end-pumped Nd: YAG ceramic passively Q-switched laser at 1123 nm based on a Ti3C2Tx-polyvinyl alcohol (PVA) film as a saturable absorber (SA). A Brewster polarizer (BP) and a birefringent crystal (BC) are incorporated to enable frequency selection and filtering for the passively Q-switched 1123 nm pulsed laser to improve the power stability and reduce the noise. When the pump power is 5.1 W, an average output power of 457.9 mW is obtained, corresponding to a repetition frequency of 1.09 MHz, a pulse width of 56 ns, a spectral line width of 0.65 nm, a power instability of ± 0.92%, and a laser noise of 0.89%. The successful implementation of the “Ti3C2Tx-PVA film passively Q-switching” combined with “frequency selection and filtering of m BP + BC” technology path provides a valuable reference for developing pulsed laser with high repetition frequency, high stability and low noise.
(Efficiency, stability, gain, and other operational parameters)
Fund: Project supported by the Serving Local Special Project of Shaanxi Provincial Department of Education of China (Grant No. 19JC040) and the National Natural Science Foundation of China (Grant No. 61905193).
Corresponding Authors:
Yang Bai
E-mail: by@nwu.edu.cn
Cite this article:
Jia-Le Yan(闫佳乐), Ben Li(李奔), Guo-Zhen Wang(王国珍), Shun-Yu Yang(杨顺宇), Bao-Le Lu(陆宝乐), and Yang Bai(白杨) High stability and low noise laser-diode end-pumped Nd: YAG ceramic passively Q-switched laser at 1123 nm based on a Ti3C2Tx-PVA saturable absorber 2023 Chin. Phys. B 32 114212
[1] Räikkönen E, Kimmelma O, Kaivola M and Buchter S C 2008 Opt. Commun.281 4088 [2] Singh S, Smith R G and Van Uitert L G 1974 Phys. Rev. B10 2566 [3] Czeranowsky C, Heumann E and Huber G 2003 Opt. Lett.28 432 [4] Liu W B, Zhang D, Zeng Y P, Li J, Pan Y B, Guo J K, Bo Y, Peng Q J and Xu Z Y 2012 Ceram. Int.38 6969 [5] Li C Y, Peng Q J, Wang B S, Bo Y, Cui D F, Xu Z Y, Feng X Q and Pan B 2011 Appl. Phys. B103 285 [6] Chen Y F and Lan Y P 2004 Appl. Phys. B79 29 [7] Cai Y P, Ding J, Bai Z X, Qi Y Y, Wang Y L and Lu Z W 2022 Opt. Laser Technol.152 108113 [8] Gao J, Dai X J, Zhang L, Sun H X and Wu X D 2013 J. Opt. Soc. Am. B30 95 [9] Shen H B, Wang Q P, Zhang Y X, Liu Z J, Bai F, Gao L, Lan W X, Wu Z G, Wang W T and Zhang Y G 2013 Laser Phys.23 035402 [10] Li Ping, Chen X H, Zhang H N, Ma B M and Wang Q P 2011 Appl. Phys. Express4 092702 [11] Liu Y, Ni J S, Shang Y, Qi H F and Zhao W N 2018 J. Russ. Laser Res.39 608 [12] Li C Y, Bo Y, Xu J L, Tian C Y, Peng Q J, Cui D F and Xu Z Y 2011 Opt. Commun.284 4574 [13] Liu H and Ma L G 2012 Chin. Phys. B21 104208 [14] Wang Z F, Wang X Z, Cai M C, Bu Y K, Chen L J and Cai G X 2014 Opt. Commun.330 143 [15] Chang A, Wu C T, Yao W M, Wang P, Chen J S, Tan H M, Tian Y B, Wu X D and Gao J 2023 Microw. Opt. Technol. Lett.65 1255 [16] Feng X Y, Ding B Y, Liang W Y, Zhang F, Ning T Y, Liu J and Zhang H 2018 Laser Phys. Lett.15 085805 [17] Hao Q Q, Liu J J, Zhang Z, Zhang B, Zhang F, Yang J M, Liu J, Su L B and Zhang H 2019 Appl. Phys. Express12 085506 [18] Tian Q Y, Yin P, Zhang T, Zhou L B, Xu B, Luo Z Q, Liu H L, Ge Y Q, Zhang J, Liu P and Xu X D 2020 Nanophotonics9 2495 [19] Wang C, Peng Q Q, Fan X W, Liang W Y, Zhang F, Liu J and Zhang H 2018 Chin. Phys. B27 094214 [20] Sarycheva A and Gogotsi Y 2020 Chem. Mater.32 3480 [21] Tai H L, Duan Z H, He Z Z, Li X, Xu J L, Liu B H and Jiang Y D 2019 Sens. Actuators B Chem.298 126874 [22] He Z W, Zheng Y, Liu H Y, Li M K, Lu H, Zhang H Z, Feng Q L and Mao D 2019 Chin. Opt. Lett.17 020004 [23] Wang X B, Xu X J, Li X and Lu Q S 2007 Appl. Opt.46 5237 [24] Sun Y X, Bai Y, Li D, Hou L, Bai B, Gong Y Z, Yu L L and Bai J T 2017 Opt. Express25 21037 [25] Bhattacharya K 2022 Eur. J. Phys.43 035305 [26] Peiponen K E and Vartiainen E M 2006 J. Opt. Soc. Am. B23 114 [27] Huang B, Wang Y and Mao C 2020 IEEE Access8 25764 [28] Bai Y, Chen Z H, Li B, Yang S Y, Liu H and Zhou J F 2022 Laser Phys.32 125803 [29] Nagai H, Kume M, Ohta I, Shimizu H and Kazumura M 1992 IEEE J. Quantum Electron.28 1164 [30] Bai Y, Bai B, Li D, Sun Y X, Li J l, Hou L, Hu M X and Bai J T 2018 High Power Laser Sci. Eng.6 e4 [31] Bai B, Bai Y, Li D, Sun Y X, Li J L and Bai J T 2018 Chin. Opt. Lett.16 031402 [32] Liu Y, Zhang S S, Cong Z H, Men S J, Guan C, Xie Y Y and Liu Z J 2021 Crystals11 58 [33] Zhu P F, Zhang C M, Song P, Bai L and Yao Y 2015 Opt. Spectrosc.118 623 [34] Wang J, Xie L, Wang Y H, Lan Y, Wu P F, Lv J, Zhang G D, Miao Z C and Cheng G H 2023 Infrared Phys. Technol.129 104580
Altmetric calculates a score based on the online attention an article receives. Each coloured thread in the circle represents a different type of online attention. The number in the centre is the Altmetric score. Social media and mainstream news media are the main sources that calculate the score. Reference managers such as Mendeley are also tracked but do not contribute to the score. Older articles often score higher because they have had more time to get noticed. To account for this, Altmetric has included the context data for other articles of a similar age.