Please wait a minute...
Chin. Phys. B, 2023, Vol. 32(11): 113401    DOI: 10.1088/1674-1056/acf11f
Special Issue: Featured Column — DATA PAPER
DATA PAPER Prev   Next  

An effective method to calculate the electron impact excitation cross sections of helium from ground state to a final channel in the whole energy region

Rui Sun(孙瑞)1,2,3,†, De-Ling Zeng(曾德灵)4,†, Rui Jin(金锐)5, Xiao-Ying Han(韩小英)3, Xiang Gao(高翔)3,‡, and Jia-Ming Li(李家明)1,6
1 Key Laboratory for Laser Plasmas, Ministry of Education, School of Physics and Astronomy, Shanghai Jiao Tong University, Shanghai 200240, China;
2 Collaborative Innovation Center of IFSA, Shanghai Jiao Tong University, Shanghai 200240, China;
3 Institute of Applied Physics and Computational Mathematics, Beijing 100088, China;
4 Institute of Electron & Electronic Measurement Technology, Shanghai Institute of Measurement and Testing Technology, Shanghai 201203, China;
5 Max-Planck-Institut für Kernphysik Saupfercheckweg 169117, Heidelberg, German;
6 Department of Physics and Center for Atomic and Molecular Nanosciences, Tsinghua University, Beijing 100084, China
Abstract  The electron impact excitation (EIE) cross sections of an atom/ion in the whole energy region are needed in many research fields, such as astrophysics studies, inertial confinement fusion researches and so on. In the present work, an effective method to calculate the EIE cross sections of an atom/ion in the whole energy region is presented. We use the EIE cross sections of helium as an illustration example. The optical forbidden 11S-n1S (n = 2-4) and optical allowed 11S-n1P (n=2-4) excitation cross sections are calculated in the whole energy region using the scheme that combines the partial wave R-matrix method and the first Born approximation. The calculated cross sections are in good agreement with the available experimental measurements. Based on these accurate cross sections of our calculation, we find that the ratios between the accurate cross sections and Born cross sections are nearly the same for different excitation final states in the same channel. According to this interesting property, a universal correction function is proposed and given to calculate the accurate EIE cross sections with the same computational efforts of the widely used Born cross sections, which should be very useful in the related application fields. The datasets presented in this paper are openly available at https://www.doi.org/10.57760/sciencedb.j00113.00142.
Keywords:  the electron impact excitation cross sections      correction function      helium      the partial wave R-matrix plus the first Born approximation method  
Received:  12 June 2023      Revised:  02 August 2023      Accepted manuscript online:  17 August 2023
PACS:  34.80.Dp (Atomic excitation and ionization)  
  31.15.A- (Ab initio calculations)  
  31.15.vj (Electron correlation calculations for atoms and ions: excited states)  
Fund: Project supported by the National Natural Science Foundation of China (Grant No. 12241410).
Corresponding Authors:  Xiang Gao     E-mail:  gao_xiang@iapcm.ac.cn

Cite this article: 

Rui Sun(孙瑞), De-Ling Zeng(曾德灵), Rui Jin(金锐), Xiao-Ying Han(韩小英), Xiang Gao(高翔), and Jia-Ming Li(李家明) An effective method to calculate the electron impact excitation cross sections of helium from ground state to a final channel in the whole energy region 2023 Chin. Phys. B 32 113401

[1] Peimbert A, Peimbert M and Luridiana V 2002 Astrophys. J. 565 668
[2] Luridiana V, Peimbert A, Peimbert M and Cervino M 2003 Astrophys. J. 592 846
[3] Peimbert M, Luridiana V and Peimbert A 2007 Astrophys. J. 666 636
[4] Clegg R E S 1987 Mon. Not. R. Astron. Soc. 229 31
[5] Kingdon J and Ferland G J 1995 Astrophys. J. 442 714
[6] Bederson B and Kieffer L J 1971 Rev. Mod. Phys. 43 601
[7] Heddle D W O and Gallagher J W 1989 Rev. Mod. Phys. 61 221
[8] Nakazaki S 1993 Adv. At. Mol. Opt. Phy. 30 1
[9] Berrington K A, Burke P G, Freitas L C G and Kingston A E 1985 J. Phys. B:At. Mol. Phys. 18 4135
[10] Sawey P and Berrington K 1993 At. Data Nucl. Data Tables 55 81
[11] Bartschat K 1998 J. Phys. B:At. Mol. Opt. Phys. 31 L469
[12] Stepanović M, Minić M, Cvejanović D, Jureta J, Kurepa J, Cvejanović S, Zatsarinny O and Bartschat K 2006 J. Phys. B:At. Mol. Opt. Phys. 39 1547
[13] Fursa D V and Bray I 1995 Phys. Rev. A 52 1279
[14] Zeng D L, Gao X, Han X Y and Li J M 2015 Phys. Rev. A 91 022707
[15] Chang J J 1977 J. Phys. B:At. Mol. Phys. 10 3335
[16] Norrington P H and Grant I P 1987 J. Phys. B:At. Mol. Phys. 20 4869
[17] Ait-Tahar S, Grant I P and Norrington P H 1996 Phys. Rev. A 54 3984
[18] Gao X, Jin R, Zeng D L, Han X Y, Yan J and Li J M 2015 Phys. Rev. A 92 052712
[19] Han X Y, Li Y M, Zhang H, Yan J, Li J M and Voky L 2008 Phys. Rev. A 78 052702
[20] Han X Y and Li J M 2006 Phys. Rev. A 74 062711
[21] Han X Y, Zeng D L, Gao X and Li J M 2015 Chin. Phys. B 24 083103
[22] Inokuti M 1971 Rev. Mod. Phys. 43 297
[23] Oppenheimer J R 1928 Phys. Rev. 32 361
[24] Ochkur V I 1964 Sov. Phys. JETP 18 503
[25] Inokuti M 1967 J. Phys. Soc. Japan 22 971
[26] Joachain J C and Roper L D 1976 Phys. Today 29 53
[27] Drake G W F 2006 Springer Handbook of Atomic, Molecular, and Optical Physics (Windsor:Springer) p. 716
[28] Register D F, Trajmar S and Srivastava S K 1980 Phys. Rev. A 21 1134
[29] Montague R G, Harrison M F A and Smith A C H 1984 J. Phys. B:At. Mol. Phys. 17 3295
[30] Nickel J C, Imre K, Register D F and Trajmar S 1985 J. Phys. B:At. Mol. Phys. 18 125
[31] Kauppila W E, Stein T S, Smart J H, Dababneh M S, Ho Y K, Downing J P and Pol V 1981 Phys. Rev. A 24 725
[32] de Heer F J, Hoekstra R, Kingston A E and Summers H P 1992 Nucl. Fusion Suppl. 3 19
[33] Sun R, Zeng D L, Jin R, Han X Y, Gao X and Li J M 2022 2004 Chin. Phys. Lett. 21 54
[39] Liang X L, Pan X C, Li J M and Lee C M 1985 Chin. Phys. Lett. 2 545
[40] Kim Y K 2001 Phys. Rev. A 64 032713
[41] Coz M 1973 Nucl. Technol. 18 313
[42] Joachain J C and Roper L D 1976 Phys. Today 29 53
[43] McCarthy I E and Weigold E 1995 Electron-Atom Collisions (Cambridge:Cambridge University Press) pp. 196-198
[44] Bar Shalom A, Klapisch M and Oreg J 1988 Phys. Rev. A 38 1773
[45] Seaton M J 1983 Rep. Prog. Phys. 46 167
[46] Gao X, Han X Y and Li J M 2016 J. Phys. B:At. Mol. Opt. Phys. 49 214005
[47] Li J M 1980 Acta. Phys. Sin. 29 419 (in Chinese)
[48] Tian B G and Li J M 1986 Acta. Phys. Sin. 35 203 (in Chinese)
[49] Qu Y Z, Wang J G, Tong X M and Li J M 1995 Chin. Phys. Lett. 12 581
[50] Kim Y K 2002 Phys. Rev. A 65 022705
[51] Elwert G and Haug E 1969 Phys. Rev. 183 90
[52] Zhu C, Wang J G, Qu Y Z and Li J M 1998 Phys. Rev. A 57 1747
[1] Runaway electron dynamics in Experimental Advanced Superconducting Tokamak helium plasmas
Chen-Xi Luo(罗晨曦), Long Zeng(曾龙), Xiang Zhu(朱翔), Tian Tang(唐天), Zhi-Yong Qiu(仇志勇),Shi-Yao Lin(林士耀), Tao Zhang(张涛), Hai-Qing Liu(刘海庆), Tong-Hui Shi(石同辉), Bin Zhang(张斌),Rui Ding(丁锐), Wei Gao(高伟), Min-Rui Wang(王敏锐), Wei Gao(高伟), Ang Ti(提昂), Hai-Lin Zhao(赵海林), Tian-Fu Zhou(周天富), Jin-Ping Qian(钱金平), You-Wen Sun(孙有文), Bo Lv(吕波), Qing Zang(臧庆),Yin-Xian Jie(揭银先), Yun-Feng Liang(梁云峰), and Xiang Gao(高翔). Chin. Phys. B, 2023, 32(7): 075209.
[2] Fine and hyperfine structures of pionic helium atoms
Zhi-Da Bai(白志达), Zhen-Xiang Zhong(钟振祥), Zong-Chao Yan(严宗朝), and Ting-Yun Shi(史庭云). Chin. Phys. B, 2023, 32(2): 023601.
[3] Helium bubble formation and evolution in NiMo-Y2O3 alloy under He ion irradiation
Awen Liu(刘阿文), Hefei Huang(黄鹤飞), Jizhao Liu(刘继召), Zhenbo Zhu(朱振博), and Yan Li(李燕). Chin. Phys. B, 2022, 31(4): 046102.
[4] Spatial characteristics of nanosecond pulsed micro-discharges in atmospheric pressure He/H2O mixture by optical emission spectroscopy
Chuanjie Chen(陈传杰), Zhongqing Fang(方忠庆), Xiaofang Yang(杨晓芳), Yongsheng Fan(樊永胜), Feng Zhou(周锋), and Rugang Wang(王如刚). Chin. Phys. B, 2022, 31(2): 025204.
[5] Development of a cryogen-free dilution refrigerator
Zhongqing Ji(姬忠庆), Jie Fan(樊洁), Jing Dong(董靖), Yongbo Bian(边勇波), and Zhi-Gang Cheng(程智刚). Chin. Phys. B, 2022, 31(12): 120703.
[6] Evolution of helium bubbles in nickel-based alloy by post-implantation annealing
Rui Zhu(朱睿), Qin Zhou(周钦), Li Shi(史力), Li-Bin Sun(孙立斌), Xin-Xin Wu(吴莘馨), Sha-Sha Lv(吕沙沙), and Zheng-Cao Li(李正操). Chin. Phys. B, 2021, 30(8): 086102.
[7] Helium-hydrogen synergistic effects on swelling in in-situ multiple-ion beams irradiated steels
Haocheng Liu(刘昊成), Jia Huang(黄嘉), Liuxuan Cao(曹留煊), Yue Su(苏悦), Zhiying Gao(高智颖), Pengfei Ma(马鹏飞), Songqin Xia(夏松钦), Wei Ge(葛伟), Qingyuan Liu(刘清元), Shuang Zhao(赵双), Yugang Wang(王宇钢), Jinchi Huang(黄金池), Zhehui Zhou(周哲辉), Pengfei Zheng(郑鹏飞), and Chenxu Wang(王晨旭). Chin. Phys. B, 2021, 30(8): 086106.
[8] Influence of helium on the evolution of irradiation-induced defects in tungsten: An object kinetic Monte Carlo simulation
Peng-Wei Hou(侯鹏伟), Yu-Hao Li(李宇浩), Zhong-Zhu Li(李中柱), Li-Fang Wang(王丽芳), Xingyu Gao(高兴誉), Hong-Bo Zhou(周洪波), Haifeng Song(宋海峰), and Guang-Hong Lu(吕广宏). Chin. Phys. B, 2021, 30(8): 086108.
[9] In-situ TEM observation of the evolution of helium bubbles in Mo during He+ irradiation and post-irradiation annealing
Yi-Peng Li(李奕鹏), Guang Ran(冉广), Xin-Yi Liu(刘歆翌), Xi Qiu(邱玺), Qing Han(韩晴), Wen-Jie Li(李文杰), and Yi-Jia Guo(郭熠佳). Chin. Phys. B, 2021, 30(8): 086109.
[10] HeTDSE: A GPU based program to solve the full-dimensional time-dependent Schrödinger equation for two-electron helium subjected to strong laser fields
Xi Zhao(赵曦), Gangtai Zhang(张刚台), Tingting Bai(白婷婷), Jun Wang(王俊), and Wei-Wei Yu(于伟威). Chin. Phys. B, 2021, 30(7): 073201.
[11] First principles study of behavior of helium at Fe(110)-graphene interface
Yan-Mei Jing(荆艳梅) and Shao-Song Huang(黄绍松). Chin. Phys. B, 2021, 30(4): 046802.
[12] Size effect of He clusters on the interactions with self-interstitial tungsten atoms at different temperatures
Jinlong Wang(王金龙), Wenqiang Dang(党文强), Daping Liu(刘大平), Zhichao Guo(郭志超). Chin. Phys. B, 2020, 29(9): 093101.
[13] Laser-assisted XUV double ionization of helium atoms: Intensity dependence of joint angular distributions
Fengzheng Zhu(朱风筝), Genliang Li(黎根亮), Aihua Liu(刘爱华). Chin. Phys. B, 2020, 29(7): 073202.
[14] Simulation of helium supersonic molecular beam injection in tokamak plasma
Xue-Ke Wu(吴雪科), Zhan-Hui Wang(王占辉), Hui-Dong Li(李会东), Li-Ming Shi(石黎铭), Di Wan(万迪), Qun-Chao Fan(樊群超), Min Xu(许敏). Chin. Phys. B, 2020, 29(6): 065201.
[15] Thermal desorption characteristic of helium ion irradiated nickel-base alloy
Shasha Lv(吕沙沙), Rui Zhu(朱睿), Yumeng Zhao(赵雨梦), Mingyang Li(李明阳), Guojing Wang(王国景), Menglin Qiu(仇猛淋), Bin Liao(廖斌), Qingsong Hua(华青松), Jianping Cheng(程建平), Zhengcao Li(李正操). Chin. Phys. B, 2020, 29(4): 040704.
No Suggested Reading articles found!