Please wait a minute...
Chin. Phys. B, 2023, Vol. 32(11): 110204    DOI: 10.1088/1674-1056/acfaf4
GENERAL Prev   Next  

Optical anapole modes in hybrid metal-dielectric nanoantenna for near-field enhancement and optical sensing

Debao Wang(王德宝)1, Jingwei Lv(吕靖薇)1,†, Wei Liu(刘伟)1, Yanru Ren(任艳茹)1, Wei Li(李薇)1, Xinchen Xu(许鑫辰)1, Chao Liu(刘超)1, and Paul K Chu(朱剑豪)2
1 School of Physics and Electronic Engineering, Northeast Petroleum University, Daqing 163318, China;
2 Department of Physics, Department of Materials Science and Engineering, and Department of Biomedical Engineering, City University of Hong Kong, Hong Kong 999077, China
Abstract  Metal-dielectric nanostructures in the optical anapole modes are essential for light-matter interactions due to the low material loss and high near-field enhancement. Herein, a hybrid metal-dielectric nanoantenna composed of six wedge-shaped gold (Au) nanoblocks as well as silica (SiO2) and silicon (Si) nanodiscs is designed and analyzed by the finite element method (FEM). The nanoantenna exhibits flexibility in excitation and manipulation of the anapole mode through the strong coupling between the metal and dielectrics, consequently improving the near-field enhancement at the gap. By systematically optimizing the structural parameters, the electric field enhancement factors at wavelengths corresponding to the anapole modes (AM1 and AM2) can be increased to 518 and 1482, respectively. Moreover, the nanoantenna delivers great performance in optical sensing such as a sensitivity of 550 nm/RIU. The results provide guidance and insights into enhancing the coupling between metals and dielectrics for applications such as surface-enhanced Raman scattering and optical sensing.
Keywords:  light-matter interaction      metal-dielectric nanoantenna      anapole mode      electric field enhancement      optical sensing  
Received:  25 June 2023      Revised:  15 September 2023      Accepted manuscript online:  19 September 2023
PACS:  02.70.Dh (Finite-element and Galerkin methods)  
  62.23.St (Complex nanostructures, including patterned or assembled structures)  
  94.20.Ss (Electric fields; current system)  
  07.07.Df (Sensors (chemical, optical, electrical, movement, gas, etc.); remote sensing)  
Fund: Project supported by the Outstanding young and middleaged research and innovation team of Northeast Petroleum University (Grant No. KYCXTD201801), the Natural Science Foundation Projects of Heilongjiang Province of China (Grant No. LH2021F007), the China Postdoctoral Science Foundation (Grant No. 2020M670881), the Study Abroad returnees merit-based Aid Foundation of Heilongjiang Province of China (Grant No. 070-719900103), the Northeastern University scientific research projects (Grant No. 2019KQ74), the City University of Hong Kong Donation Research (Grant Nos. 9220061 and DON-RMG 9229021), and the City University of Hong Kong Strategic Research (Grant No. SRG 7005505).
Corresponding Authors:  Jingwei Lv     E-mail:  lvjingwei2009123@126.com

Cite this article: 

Debao Wang(王德宝), Jingwei Lv(吕靖薇), Wei Liu(刘伟), Yanru Ren(任艳茹), Wei Li(李薇), Xinchen Xu(许鑫辰), Chao Liu(刘超), and Paul K Chu(朱剑豪) Optical anapole modes in hybrid metal-dielectric nanoantenna for near-field enhancement and optical sensing 2023 Chin. Phys. B 32 110204

[1] Kuznetsov A I, Miroshnichenko A E, Brongersma M L, Kivshar Y S and Luk'yanchuk B 2016 Science 354 2472
[2] Sain B and Zentgraf T 2019 Adv. Photonics 1 024002
[3] Limonov M F, Rybin M V, Poddubny A N and Kivshar Y S 2017 Nat. Photonics 11 543
[4] Attiaoui A, Daligou G, Assali S, Skibitzki O, Schroeder T and Moutanabbir O 2023 Adv. Mater. 35 2300595
[5] Sabri L, Huang Q, Liu J N and Cunningham B T 2019 Opt. Express 27 7196
[6] Zhang Y, Chen G, Zhao J, Niu C and Wang Z 2023 Appl. Opt. 62 2952
[7] Tian S, Wang J, Sun S, He M, Mao Y, Gao Y and Ding P 2023 Results Phys. 49 106485
[8] Wang D, Fan X, Fang W, Niu H J, Tao J, Li C, Wei X, Sun Q, Chen H, Zhao H, Yin Y, Zhang W, Bai C L and Kumar S 2023 Opt. Express 31 10805
[9] Totero G J S, Miroshnichenko A E, Kivshar Y S and Fratalocchi A 2017 Nat. Commun. 8 15535
[10] Lawrence M, Barton D R and Dionne J A 2018 Nano Lett. 18 1104
[11] Liu Z, Xu Y, Lin Y, Xiang J and Liu J 2019 Phys. Rev. Lett. 123 253901
[12] Liu C, Lv J, Liu W, Wang F and Chu P K 2021 Chin. Opt. Lett. 19 102202
[13] Liu W, Hu C, Zhou L, Yi Z, Liu C, Lv J, Yang L and Chu P K 2022 Physica E:Low Dimens. Syst. Nanostruct. 138 115106
[14] Liu W, Hu C, Zhou L, Yi Z, Shi Y, Liu C, Lv J, Yang L and Chu P K 2021 Mod. Phys. Lett. B 36 2150499
[15] Baranov D G, Verre R, Karpinski P and Kall M 2018 ACS Photonics 5 2730
[16] Dong T, Liang J, Camayd-Munoz S, Liu Y, Tang H, Kita S, Chen P, Wu X, Chu W, Mazur E and Li Y 2021 Light Sci. Appl. 10 10
[17] Baryshnikova K V, Smirnova D A, Luk'Yanchuk B S and Kivshar Y S 2019 Adv. Opt. Mater. 7 1801350
[18] Koshelev K, Favraud G, Bogdanov A, Kivshar Y and Fratalocchi A 2019 Nanophotonics 8 725
[19] Lv J, Zhang H, Liu C, Yi Z, Wang F, Mu H, Li X, Sun T and Chu P K 2021 Nanomaterials 11 1490
[20] Wu J, Zhang F, Li Q, Feng Q, Wu Y and Wu L 2020 Opt. Express 28 570
[21] He M, Wang J, Sun S, Mao Y, Li R, Tian S, Munib H N T and Liang E 2022 Results Phys. 40 105809
[22] Zhou J, Wang Y, Zhang L and Li X 2018 Chin. Chem. Lett. 29 54
[23] Ma S, Yang D J, Ding S J, Liu J, Wang W, Wu Z Y, Liu X D, Zhou L and Wang Q Q 2021 Phys. Rev. Lett. 126 173902
[24] Wang Y, Wang T, Yan R, Yue X, Wang L, Wang H, Zhang J, Yuan X, Zeng J and Wang J 2023 IEEE Sens. J. 23 14662
[25] Min Y and Wang Y 2020 Front. Chem. 8 411
[26] Barreda A, Vitale F, Minovich A E, Ronning C and Staude I 2022 Adv. Photonics Res. 3 2100286
[27] Yao J, Li B, Cai G and Liu Q H 2021 Opt. Lett. 46 576
[28] Kapitanova P, Zanganeh E, Pavlov N, Song M, Belov P, Evlyukhin A and Miroshnichenko A 2020 Ann. Phys. 532 2000293
[29] Ma C, Zhou F, Huang P, Li M, Feng Z, Feng Z, Liu Y, Li X, Guan B O and Chen K 2022 Small 18 2204883
[30] Miroshnichenko A E, Evlyukhin A B, Yu Y F, Bakker R M, Chipouline A, Kuznetsov A I, Luk'yanchuk B, Chichkov B N and Kivshar Y S 2015 Nat. Commun. 6 8069
[31] Liu L and Ge L 2022 Opt. Express 30 7491
[32] Savinov V, Fedotov V A and Zheludev N I 2014 Phys. Rev. B 89 205112
[33] Zhang X, Zhang Q, Yuan Y, Liu J and Liu X 2020 Phys. Lett. A 384 126696
[34] Xu C, Cheng K, Li Q, Shang X, Wu C, Wei Z, Zhang X and Li H 2019 AIP Adv. 9 075121
[35] Ray D, Raziman T V, Santschi C, Etezadi D, Altug H and Martin O J F 2020 Nano Lett. 20 8752
[36] Ray D, Kiselev A and Martin O J F 2021 Opt. Express 29 24056
[37] Palik E D 2017 ACS Photonics 4 2638
[39] Yang Y, Zenin V A and Bozhevolnyi S I 2023 J. Phys. Chem. C 127 2456
[41] Macia N, Bresoli-Obach R, Nonell S and Heyne B 2019 J. Am. Chem. Soc. 141 684
[42] Feng H, Dong J, Wu X, Yang F, Ma L, Liu X and Liu Q 2020 Opt. Lett. 45 2099
[43] Liu S, Ju P, Lv L, Tang P, Wang H, Zhong L and Lu X 2021 Opt. Express 29 35678
[44] Dong J, Feng H, Wang X, Chen S, Wang S, Zhang C and Liu Q 2021 Nanotechnology 32 505708
[45] El Shamy R S, Khalil D and Swillam M A 2020 Sci. Rep. 10 1293
[46] Liu W, Shi Y, Yi Z, Liu C, Wang F, Li X, Lv J, Yang L and Chu P K 2021 Opt. Express 29 40734
[47] Liu W, Liu C, Wang J, Lv J, Lv Y, Yang L, An N, Yi Z, Liu Q, Hu C and Chu P K 2023 Results Phys. 47 106365
[48] Jeong J, Goldflam M, Campione S, Briscoe J L, Vabishchevich P, Nogan J, Sinclair M, Luk T and Brener I 2020 ACS Photonics 7 1699
[49] Rakhshani M R and Rashki M 2022 Opt. Express 30 10387
[50] Zhou Y, Luo M, Zhao X, Li Y, Wang Q, Liu Z, Guo J, Guo Z, Liu J and Wu X 2023 Nanophotonics 12 1295
[1] Hidden symmetry operators for asymmetric generalized quantum Rabi models
Xilin Lu, Zi-Min Li, Vladimir V Mangazeev, and Murray T Batchelor. Chin. Phys. B, 2022, 31(1): 014210.
[2] Light focusing in linear arranged symmetric nanoparticle trimer on metal film system
Yuxia Tang(唐裕霞), Shuxia Wang(王蜀霞), Yingzhou Huang(黄映洲), and Yurui Fang(方蔚瑞). Chin. Phys. B, 2022, 31(1): 017303.
[3] Cascaded plasmonic nanorod antenna for large broadband local electric field enhancement
Dou Zhang(张豆), Zhong-Jian Yang(杨中见), Jun He(何军). Chin. Phys. B, 2019, 28(10): 107802.
[4] Unconventional phase transition of phase-change-memory materials for optical data storage
Nian-Ke Chen(陈念科), Xian-Bin Li(李贤斌). Chin. Phys. B, 2019, 28(10): 104202.
[5] Analysis of resonance asymmetry phenomenon in resonator integrated optic gyro
Yao Fei(费瑶), Yu-Ming He(何玉铭), Xiao-Dong Wang(王晓东), Fu-Hua Yang(杨富华), Zhao-Feng Li(李兆峰). Chin. Phys. B, 2018, 27(8): 084213.
[6] Highly-sensitive NO, NO2, and NH3 measurements with an open-multipass cell based on mid-infrared wavelength modulation spectroscopy
Xiang Chen(陈祥), Chen-Guang Yang(杨晨光), Mai Hu(胡迈), Jian-Kang Shen(沈建康), Er-Chao Niu(牛二超), Zhen-Yu Xu(许振宇), Xue-Li Fan(范雪丽), Min Wei(魏敏), Lu Yao(姚路), Ya-Bai He(何亚柏), Jian-Guo Liu(刘建国), Rui-Feng Kan(阚瑞峰). Chin. Phys. B, 2018, 27(4): 040701.
[7] The effect of field modulation on the vibrational population of the photoassociated NaK and its dynamics
Yu Wang(王玉), Da-Guang Yue(岳大光), Xu-Cong Zhou(周旭聪), Ya-Hui Guo(郭雅慧), Qing-Tian Meng(孟庆田). Chin. Phys. B, 2017, 26(4): 043202.
[8] Light-matter interaction of 2D materials: Physics and device applications
Zi-Wei Li(李梓维), Yi-Han Hu(胡义涵), Yu Li(李瑜), Zhe-Yu Fang(方哲宇). Chin. Phys. B, 2017, 26(3): 036802.
[9] Manipulating electromagnetic waves with metamaterials:Concept and microwave realizations
He Qiong (何琼), Sun Shu-Lin (孙树林), Xiao Shi-Yi (肖诗逸), Li Xin (李欣), Song Zheng-Yong (宋争勇), Sun Wu-Jiong (孙午炯), Zhou Lei (周磊). Chin. Phys. B, 2014, 23(4): 047808.
[10] Influence of laser fields on the vibrational population of molecules and its wave-packet dynamical investigation
Wang Jun(王军), Liu Fang(刘芳), Yue Da-Guang(岳大光), Zhao Juan(赵娟), Xu Yan(许燕), Meng Qing-Tian(孟庆田), and Liu Wing-Ki. Chin. Phys. B, 2010, 19(12): 123301.
[11] Investigation of the limit of lateral beam shifts on a symmetrical metal-cladding waveguide
Chen Lin(陈麟),Zhu Yi-Ming(朱亦鸣),Zhang Da-Wei(张大伟), Cao Zhuang-Qi(曹庄琪), and Zhuang Song-Lin(庄松林) . Chin. Phys. B, 2009, 18(11): 4875-4880.
No Suggested Reading articles found!