|
|
Optical anapole modes in hybrid metal-dielectric nanoantenna for near-field enhancement and optical sensing |
Debao Wang(王德宝)1, Jingwei Lv(吕靖薇)1,†, Wei Liu(刘伟)1, Yanru Ren(任艳茹)1, Wei Li(李薇)1, Xinchen Xu(许鑫辰)1, Chao Liu(刘超)1, and Paul K Chu(朱剑豪)2 |
1 School of Physics and Electronic Engineering, Northeast Petroleum University, Daqing 163318, China; 2 Department of Physics, Department of Materials Science and Engineering, and Department of Biomedical Engineering, City University of Hong Kong, Hong Kong 999077, China |
|
|
Abstract Metal-dielectric nanostructures in the optical anapole modes are essential for light-matter interactions due to the low material loss and high near-field enhancement. Herein, a hybrid metal-dielectric nanoantenna composed of six wedge-shaped gold (Au) nanoblocks as well as silica (SiO2) and silicon (Si) nanodiscs is designed and analyzed by the finite element method (FEM). The nanoantenna exhibits flexibility in excitation and manipulation of the anapole mode through the strong coupling between the metal and dielectrics, consequently improving the near-field enhancement at the gap. By systematically optimizing the structural parameters, the electric field enhancement factors at wavelengths corresponding to the anapole modes (AM1 and AM2) can be increased to 518 and 1482, respectively. Moreover, the nanoantenna delivers great performance in optical sensing such as a sensitivity of 550 nm/RIU. The results provide guidance and insights into enhancing the coupling between metals and dielectrics for applications such as surface-enhanced Raman scattering and optical sensing.
|
Received: 25 June 2023
Revised: 15 September 2023
Accepted manuscript online: 19 September 2023
|
PACS:
|
02.70.Dh
|
(Finite-element and Galerkin methods)
|
|
62.23.St
|
(Complex nanostructures, including patterned or assembled structures)
|
|
94.20.Ss
|
(Electric fields; current system)
|
|
07.07.Df
|
(Sensors (chemical, optical, electrical, movement, gas, etc.); remote sensing)
|
|
Fund: Project supported by the Outstanding young and middleaged research and innovation team of Northeast Petroleum University (Grant No. KYCXTD201801), the Natural Science Foundation Projects of Heilongjiang Province of China (Grant No. LH2021F007), the China Postdoctoral Science Foundation (Grant No. 2020M670881), the Study Abroad returnees merit-based Aid Foundation of Heilongjiang Province of China (Grant No. 070-719900103), the Northeastern University scientific research projects (Grant No. 2019KQ74), the City University of Hong Kong Donation Research (Grant Nos. 9220061 and DON-RMG 9229021), and the City University of Hong Kong Strategic Research (Grant No. SRG 7005505). |
Corresponding Authors:
Jingwei Lv
E-mail: lvjingwei2009123@126.com
|
Cite this article:
Debao Wang(王德宝), Jingwei Lv(吕靖薇), Wei Liu(刘伟), Yanru Ren(任艳茹), Wei Li(李薇), Xinchen Xu(许鑫辰), Chao Liu(刘超), and Paul K Chu(朱剑豪) Optical anapole modes in hybrid metal-dielectric nanoantenna for near-field enhancement and optical sensing 2023 Chin. Phys. B 32 110204
|
[1] Kuznetsov A I, Miroshnichenko A E, Brongersma M L, Kivshar Y S and Luk'yanchuk B 2016 Science 354 2472 [2] Sain B and Zentgraf T 2019 Adv. Photonics 1 024002 [3] Limonov M F, Rybin M V, Poddubny A N and Kivshar Y S 2017 Nat. Photonics 11 543 [4] Attiaoui A, Daligou G, Assali S, Skibitzki O, Schroeder T and Moutanabbir O 2023 Adv. Mater. 35 2300595 [5] Sabri L, Huang Q, Liu J N and Cunningham B T 2019 Opt. Express 27 7196 [6] Zhang Y, Chen G, Zhao J, Niu C and Wang Z 2023 Appl. Opt. 62 2952 [7] Tian S, Wang J, Sun S, He M, Mao Y, Gao Y and Ding P 2023 Results Phys. 49 106485 [8] Wang D, Fan X, Fang W, Niu H J, Tao J, Li C, Wei X, Sun Q, Chen H, Zhao H, Yin Y, Zhang W, Bai C L and Kumar S 2023 Opt. Express 31 10805 [9] Totero G J S, Miroshnichenko A E, Kivshar Y S and Fratalocchi A 2017 Nat. Commun. 8 15535 [10] Lawrence M, Barton D R and Dionne J A 2018 Nano Lett. 18 1104 [11] Liu Z, Xu Y, Lin Y, Xiang J and Liu J 2019 Phys. Rev. Lett. 123 253901 [12] Liu C, Lv J, Liu W, Wang F and Chu P K 2021 Chin. Opt. Lett. 19 102202 [13] Liu W, Hu C, Zhou L, Yi Z, Liu C, Lv J, Yang L and Chu P K 2022 Physica E:Low Dimens. Syst. Nanostruct. 138 115106 [14] Liu W, Hu C, Zhou L, Yi Z, Shi Y, Liu C, Lv J, Yang L and Chu P K 2021 Mod. Phys. Lett. B 36 2150499 [15] Baranov D G, Verre R, Karpinski P and Kall M 2018 ACS Photonics 5 2730 [16] Dong T, Liang J, Camayd-Munoz S, Liu Y, Tang H, Kita S, Chen P, Wu X, Chu W, Mazur E and Li Y 2021 Light Sci. Appl. 10 10 [17] Baryshnikova K V, Smirnova D A, Luk'Yanchuk B S and Kivshar Y S 2019 Adv. Opt. Mater. 7 1801350 [18] Koshelev K, Favraud G, Bogdanov A, Kivshar Y and Fratalocchi A 2019 Nanophotonics 8 725 [19] Lv J, Zhang H, Liu C, Yi Z, Wang F, Mu H, Li X, Sun T and Chu P K 2021 Nanomaterials 11 1490 [20] Wu J, Zhang F, Li Q, Feng Q, Wu Y and Wu L 2020 Opt. Express 28 570 [21] He M, Wang J, Sun S, Mao Y, Li R, Tian S, Munib H N T and Liang E 2022 Results Phys. 40 105809 [22] Zhou J, Wang Y, Zhang L and Li X 2018 Chin. Chem. Lett. 29 54 [23] Ma S, Yang D J, Ding S J, Liu J, Wang W, Wu Z Y, Liu X D, Zhou L and Wang Q Q 2021 Phys. Rev. Lett. 126 173902 [24] Wang Y, Wang T, Yan R, Yue X, Wang L, Wang H, Zhang J, Yuan X, Zeng J and Wang J 2023 IEEE Sens. J. 23 14662 [25] Min Y and Wang Y 2020 Front. Chem. 8 411 [26] Barreda A, Vitale F, Minovich A E, Ronning C and Staude I 2022 Adv. Photonics Res. 3 2100286 [27] Yao J, Li B, Cai G and Liu Q H 2021 Opt. Lett. 46 576 [28] Kapitanova P, Zanganeh E, Pavlov N, Song M, Belov P, Evlyukhin A and Miroshnichenko A 2020 Ann. Phys. 532 2000293 [29] Ma C, Zhou F, Huang P, Li M, Feng Z, Feng Z, Liu Y, Li X, Guan B O and Chen K 2022 Small 18 2204883 [30] Miroshnichenko A E, Evlyukhin A B, Yu Y F, Bakker R M, Chipouline A, Kuznetsov A I, Luk'yanchuk B, Chichkov B N and Kivshar Y S 2015 Nat. Commun. 6 8069 [31] Liu L and Ge L 2022 Opt. Express 30 7491 [32] Savinov V, Fedotov V A and Zheludev N I 2014 Phys. Rev. B 89 205112 [33] Zhang X, Zhang Q, Yuan Y, Liu J and Liu X 2020 Phys. Lett. A 384 126696 [34] Xu C, Cheng K, Li Q, Shang X, Wu C, Wei Z, Zhang X and Li H 2019 AIP Adv. 9 075121 [35] Ray D, Raziman T V, Santschi C, Etezadi D, Altug H and Martin O J F 2020 Nano Lett. 20 8752 [36] Ray D, Kiselev A and Martin O J F 2021 Opt. Express 29 24056 [37] Palik E D 2017 ACS Photonics 4 2638 [39] Yang Y, Zenin V A and Bozhevolnyi S I 2023 J. Phys. Chem. C 127 2456 [41] Macia N, Bresoli-Obach R, Nonell S and Heyne B 2019 J. Am. Chem. Soc. 141 684 [42] Feng H, Dong J, Wu X, Yang F, Ma L, Liu X and Liu Q 2020 Opt. Lett. 45 2099 [43] Liu S, Ju P, Lv L, Tang P, Wang H, Zhong L and Lu X 2021 Opt. Express 29 35678 [44] Dong J, Feng H, Wang X, Chen S, Wang S, Zhang C and Liu Q 2021 Nanotechnology 32 505708 [45] El Shamy R S, Khalil D and Swillam M A 2020 Sci. Rep. 10 1293 [46] Liu W, Shi Y, Yi Z, Liu C, Wang F, Li X, Lv J, Yang L and Chu P K 2021 Opt. Express 29 40734 [47] Liu W, Liu C, Wang J, Lv J, Lv Y, Yang L, An N, Yi Z, Liu Q, Hu C and Chu P K 2023 Results Phys. 47 106365 [48] Jeong J, Goldflam M, Campione S, Briscoe J L, Vabishchevich P, Nogan J, Sinclair M, Luk T and Brener I 2020 ACS Photonics 7 1699 [49] Rakhshani M R and Rashki M 2022 Opt. Express 30 10387 [50] Zhou Y, Luo M, Zhao X, Li Y, Wang Q, Liu Z, Guo J, Guo Z, Liu J and Wu X 2023 Nanophotonics 12 1295 |
No Suggested Reading articles found! |
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
Altmetric
|
blogs
Facebook pages
Wikipedia page
Google+ users
|
Online attention
Altmetric calculates a score based on the online attention an article receives. Each coloured thread in the circle represents a different type of online attention. The number in the centre is the Altmetric score. Social media and mainstream news media are the main sources that calculate the score. Reference managers such as Mendeley are also tracked but do not contribute to the score. Older articles often score higher because they have had more time to get noticed. To account for this, Altmetric has included the context data for other articles of a similar age.
View more on Altmetrics
|
|
|