INTERDISCIPLINARY PHYSICS AND RELATED AREAS OF SCIENCE AND TECHNOLOGY |
Prev
Next
|
|
|
Parameter calculation and result storage for phase-field simulation in α-Mg dendrite growth of Mg-5-wt% Zn alloy |
Wei-Peng Chen(陈伟鹏)1, Hua Hou(侯华)1,3, Yun-Tao Zhang(张云涛)1, Wei Liu(柳伟)1, and Yu-Hong Zhao(赵宇宏)2,1,4,† |
1 School of Materials Science and Engineering, Collaborative Innovation Center of Ministry of Education and Shanxi Province for High-performance Al/Mg Alloy Materials, North University of China, Taiyuan 030051, China; 2 Beijing Advanced Innovation Center for Materials Genome Engineering, University of Science and Technology Beijing, Beijing 100083, China; 3 School of Materials Science and Engineering, Taiyuan University of Science and Technology, Taiyuan 030024, China; 4 Institute of Materials Intelligent Technology, Liaoning Academy of Materials, Shenyang 110004, China |
|
|
Abstract Parameter calculation and result storage, as two necessary steps in phase-field simulation play an important role in ensuring the accuracy of simulation results. A strategy of parameter calculation and result storage is presented for phase-field simulation in α-Mg dendrite growth of Mg-5-wt% Zn alloy under isothermal solidification. Based on the phase diagram and empirical formulas, key parameters of the phase-field model, such as equilibrium partition coefficient k, liquidus slope m, solutal diffusion coefficient in liquid Dl, and solutal diffusion coefficient in solid Ds, can be obtained. Both structured grid method and structured point method can be used to store simulation results, but using the latter method will reduce about 60% storage space and 37.5% storage time compared with the former. Finally, convergent simulation results of α-Mg dendrite growth are obtained and they are in good agreement with the experimental results about optical micrograph, which verify the accuracy of parameters and stability of storage method.
|
Received: 02 February 2023
Revised: 25 April 2023
Accepted manuscript online: 23 May 2023
|
PACS:
|
81.30.Fb
|
(Solidification)
|
|
81.10.Aj
|
(Theory and models of crystal growth; physics and chemistry of crystal growth, crystal morphology, and orientation)
|
|
Fund: Project supported by the National Natural Science Foundation of China (Grant Nos. 52074246, 52275390, 52205429, and 52201146), the National Defense Basic Scientific Research Program of China (Grant Nos. JCKY2020408B002 and WDZC2022-12), the Science and Technology Major Project of Shanxi Province, China (Grant Nos. 20191102008 and 20191102007), and the Guiding Local Science and Technology Development Projects by the Central Government, China (Grant Nos. YDZJSX2022A025 and YDZJSX2021A027). |
Corresponding Authors:
Yu-Hong Zhao
E-mail: zhaoyuhong@nuc.edu.cn
|
Cite this article:
Wei-Peng Chen(陈伟鹏), Hua Hou(侯华), Yun-Tao Zhang(张云涛), Wei Liu(柳伟), and Yu-Hong Zhao(赵宇宏) Parameter calculation and result storage for phase-field simulation in α-Mg dendrite growth of Mg-5-wt% Zn alloy 2023 Chin. Phys. B 32 118103
|
[1] Chen L Q and Zhao Y H 2022 Prog. Mater. Sci. 124 100868 [2] Geslin P A, Chen C H, Tabrizi A M and Karma A 2021 Acta Mater. 202 42 [3] Chen C H, Tabrizi A M, Geslin P A and Karma A 2021 Acta Mater. 202 463 [4] Xin T Z, Zhao Y H, Mahjoub R, Jiang J X, Yadav A, Nomoto K, Niu R M, Tang S, Ji F, Quadir Z, Miskovic D, Daniels J, Xu W Q, Liao X Z, Chen L Q, Hagihara K, Li X Y, Ringer S and Ferry M 2021 Sci. Adv. 7 eabf3039 [5] Zhao Y H 2022 Intermetallics 144 107528 [6] Zhao Y H, Liu K X, Hou H and Chen L Q 2022 Mater. Design 216 110555 [7] He R, Wang M T, Jin J F and Zong Y P 2017 Chin. Phys. B 26 128201 [8] Zhao Y H 2023 Front. Mater. 10 1145833 [9] Ohno M, Shibuta Y and Takaki T 2019 Mater. Trans. 60 170 [10] Zhang A, Guo Z P, Jiang B, Du J L, Wang C H, Huang G S, Zhang D F, Liu F, Xiong S M and Pan F S 2021 Acta Mater. 214 117005 [11] Wang N Q, Korba D, Liu Z X, Prabhu R, Priddy M W, Yang S F, Chen L and Li L K 2021 Comput. Methods Appl. Mech. Engrg. 385 114026 [12] Greenwood M, Shampur K N, Ofori-Opoku N, Pinomaa T, Wang L, Gurevich S and Provatas N 2018 Comp. Mater. Sci. 142 153 [13] Sakane S, Aoki T and Takaki T 2022 Comp. Mater. Sci. 211 111507 [14] Guo Y Q, Luo S, Wang W L and Zhu M Y 2022 J. Mater. Res. Technol. 17 2059 [15] Sun W Z, Yan R, Zhang Y Z, Dong H B and Jing T 2019 Comp. Mater. Sci. 160 149 [16] Zhang Z D, Cao Y T, Sun D K, Xing H, Wang J C and Ni Z H 2020 Chin. Phys. B 29 028103 [17] Xing H, An Q, Dong X L and Han Y S 2022 Chin. Phys. B 31 048104 [18] Zhu C S, Gao Z H, Lei P, Feng L and Zhao B R 2022 Chin. Phys. B 31 068102 [19] Tourret D, Liu H and Llorca J 2022 Prog. Mater. Sci. 123 100810 [20] Chen Q Q, Zhang L, Tang S, Liang C P, Ma Y Z and Liu W S 2021 Calphad 74 102271 [21] Chen W P, Zhao Y H, Yang S, Zhang D and Hou H 2021 Adv. Compos. Hybrid Mater. 4 371 [22] Zhao Y H 2023 Npj Comput. Mater. 9 94 [23] Yamada R, Kudo M, Kim G, Takaki T, Shibuta Y and Ohno M 2022 Comp. Mater. Sci. 204 111173 [24] Sun W Z, Xie Y, Yan R, Ma S D, Dong H B and Jing T 2019 Metall. Mater. Trans. B 50 2487 [25] Echebarria B, Folch R, Karma A and Plapp M 2004 Phys. Rev. E 70 061604 [26] Ohno M and Matsuura K 2009 Phys. Rev. E 79 031603 [27] Du J L, Zhang A, Guo Z P, Yang M H, Li M, Liu F and Xiong S M 2018 Acta Mater. 161 35 [28] Xing H, Dong X L, Wang J Y and Jin K X 2018 Metall. Mater. Trans. B 49 1547 [29] Boukellal A K, Rouby M and Debierre J M 2021 Comp. Mater. Sci. 186 110051 [30] Ouyang Y F, Liu K, Peng C Y, Chen H M, Tao X M and Du Y 2019 Calphad 65 204 [31] Zhong W and Zhao J C 2017 Metall. Mater. Trans. A 48 5778 [32] Yang S, Su X P, Wang J H, Yin F C, Tang N Y, Li Z, Wang X M, Zhu Z X, Tu H and Li X Q 2011 Metall. Mater. Trans. A 42 1785 [33] Becker M, Dantzig J, Kolbe M, Wiese S T and Kargl F 2019 Acta Mater. 165 666 [34] Du J L, Zhang A, Guo Z P, Yang M H, Li M and Xiong S M 2017 Acs Omega 2 8803 [35] Gale W F and Totemeier T C 2004 Smithells Metals Reference Book, 8nd edn. (Oxford:Butterworth-Heinemann) pp. 8-2-14-1 [36] Kammerer C C, Kulkarni N S, Warmack R J and Sohn Y H 2014 J. Alloys Compd. 617 968 |
No Suggested Reading articles found! |
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
Altmetric
|
blogs
Facebook pages
Wikipedia page
Google+ users
|
Online attention
Altmetric calculates a score based on the online attention an article receives. Each coloured thread in the circle represents a different type of online attention. The number in the centre is the Altmetric score. Social media and mainstream news media are the main sources that calculate the score. Reference managers such as Mendeley are also tracked but do not contribute to the score. Older articles often score higher because they have had more time to get noticed. To account for this, Altmetric has included the context data for other articles of a similar age.
View more on Altmetrics
|
|
|