Please wait a minute...
Chin. Phys. B, 2023, Vol. 32(11): 113402    DOI: 10.1088/1674-1056/acf5d6
Special Issue: Featured Column — DATA PAPER
DATA PAPER Prev   Next  

Oscillator strength and cross section study of the valence-shell excitations of NO2 by fast electron scattering

Qiang Sun(孙强), Jin-Feng Chen(陈锦峰), Zhi-Wei Nie(聂智伟), Jian-Hui Zhu(朱剑辉), and Lin-Fan Zhu(朱林繁)
Department of Modern Physics, University of Science and Technology of China, Hefei 230026, China
Abstract  Oscillator strengths and cross sections of the valence-shell excitations in NO2 are of great significance in testing the theoretical calculations and monitoring the state of the ozone layer in the earth's atmosphere. In the present work, the generalized oscillator strengths of the valence-shell excitations in NO2 were obtained based on the fast electron scattering technique at an incident electron energy of 1.5 keV and an energy resolution of about 70 meV. By extrapolating the generalized oscillator strengths to the limit of a zero squared momentum transfer, the optical oscillator strengths for the dipole-allowed transitions have been obtained, which provide an independent cross check to the previous experimental results. Based on the BE-scaling method, the corresponding integral cross sections have also been derived systematically from the excitation threshold to 5000 eV. The present dynamic parameters can provide the fundamental spectroscopic data of NO2 and have important applications in the studies of atmospheric science. The datasets presented in this paper, including the GOSs, OOSs and ICSs, are openly available at https://doi.org/10.57760/sciencedb.j00113.00156.
Keywords:  nitrogen dioxide      oscillator strength      integral cross section      electron scattering  
Received:  02 August 2023      Revised:  25 August 2023      Accepted manuscript online:  01 September 2023
PACS:  34.80.Gs (Molecular excitation and ionization)  
  25.30.Dh (Inelastic electron scattering to specific states)  
  95.30.Ky (Atomic and molecular data, spectra, and spectralparameters (opacities, rotation constants, line identification, oscillator strengths, gf values, transition probabilities, etc.))  
Fund: Project supported by the National Key Research and Development Program of China (Grant No. 2022YFA1602500) and the National Natural Science Foundation of China (Grant Nos. 12334010 and U1932207).
Corresponding Authors:  Lin-Fan Zhu     E-mail:  lfzhu@ustc.edu.cn

Cite this article: 

Qiang Sun(孙强), Jin-Feng Chen(陈锦峰), Zhi-Wei Nie(聂智伟), Jian-Hui Zhu(朱剑辉), and Lin-Fan Zhu(朱林繁) Oscillator strength and cross section study of the valence-shell excitations of NO2 by fast electron scattering 2023 Chin. Phys. B 32 113402

[1] Katz M 1970 Can. J. Chem. Eng. 48 3
[2] Fuglestvedt J, Isaksen I and Wang W C 1996 Clim. Change 34 405
[3] Abedi A, Cicman P, Coupier B, Gulejov B, Buchanan G, Marston G, Mason N, Scheier P and Mrk T 2004 Int. J. Mass Spectrom. 232 147
[4] Rowland F S and Molina M J 1975 Rev. Geophys. 13 1
[5] Elliot S and Rowland F S 1987 J. Chem. Educ. 64 387
[6] Rolke J, Cann N, Zheng Y, Hollebone B, Brion C, Wang Y and Davidson E 1995 Chem. Phys. 201 1
[7] Hall T C J and Blacet F E 1952 J. Chem. Phys. 20 1745
[8] Verhoek F H and Daniels F 1931 J. Am. Chem. Soc. 53 1250
[9] Nakayama T, Kitamura M Y and Watanabe K 1959 J. Chem. Phys. 30 1180
[10] Johnston H S and Graham R 1974 Can. J. Chem. 52 1415
[11] Bass A M, Ledford A E J and Laufer A H 1976 J. Res. Natl. Bur. Stand. A:Phys Chem. 80A 143
[12] Schneider W, Moortgat G K, Tyndall G S and Burrows J P 1987 J. Photochem. Photobiol. A:Chem. 40 195
[13] Mrienne M F, Jenouvrier A and Coquart B 1995 J. Atmos. Chem. 20 281
[14] Coquart B, Jenouvrier A and Mrienne M F 1995 J. Atmos. Chem. 21 251
[15] Jenouvrier A, Coquart B and Mrienne M F 1996 J. Atmos. Chem. 25 21
[16] MrienneM F, Jenouvrier A and Coquart B L J P 1997 J. Atmos. Chem. 27 219
[17] Bogumil K, Orphal J, Homann T, Voigt S, Spietz P, Fleis-chmann O, Vogel A, Hartmann M, Kromminga H, Bovensmann H, Frerick J and Burrows J 2003 J. Photochem. Photobiol. A:Chem. 157 167
[18] Au J W and Brion C 1997 Chem. Phys. 218 109
[19] McEwen K L 2004 J. Chem. Phys. 32 1801
[20] Gangi R A and Burnelle L 2003 J. Chem. Phys. 55 851
[21] Lassettre E N 1965 J. Chem. Phys. 43 4479
[22] Tanaka H, Brunger M J, Campbell L, Kato H, Hoshino M and Rau A R P 2016 Rev. Mod. Phys. 88 025004
[23] Bethe H 1930 Ann. Phys. 397 325
[24] Wu S L, Zhong Z P, Feng R F, Xing S L, Yang B X and Xu K Z 1995 Phys. Rev. A 51 4494
[25] Xu K Z, Feng R F, Wu S L, Ji Q, Zhang X J, Zhong Z P and Zheng Y 1996 Phys. Rev. A 53 3081
[26] Liu X J, Zhu L F, Jiang X M, Yuan Z S, Cai B, Chen X J and Xu K Z 2001 Rev. Sci. Instrum. 72 3357
[27] Khakoo M A and Trajmar S 1986 Phys. Rev. A 34 138
[28] Nickel J C, Zetner P W, Shen G and Trajmar S 1989 J. Phys. E:Sci. Instr. 22 730
[29] Ni D D, Xu L Q, Liu Y W, Yang K, Hiraoka N, Tsuei K D and Zhu L F 2017 Phys. Rev. A 96 012518
[30] Liu Y W, Xu L Q, Ni D D, Xu X, Huang X C and Zhu L F 2017 J. Geophys. Res. Space Phys. 122 3459
[31] Zhong Z P, Feng R F, Xu K Z, Wu S L, Zhu L F, Zhang X J, Ji Q and Shi Q C 1997 Phys. Rev. A 55 1799
[32] Bethe V H 1932 Z. Phys. 76 293
[33] Cann N M and Thakkar A J 2002 J. Electron. Spectrosc. Relat. Phenom. 123 143
[34] Xie B P, Zhu L F, Yang K, Zhou B, Hiraoka N, Cai Y Q, Yao Y, Wu C Q, Wang E L and Feng D L 2010 Phys. Rev. A 82 032501
[35] Zhu L F, Wang L S, Xie B P, Yang K, Hiraoka N, Cai Y Q and Feng D L 2011 J. Phys. B:At. Mol. Opt. Phys. 44 025203
[36] Inokuti M 1971 Rev. Mod. Phys. 43 297
[37] Kim Y K 2001 Phys. Rev. A. 64 032713
[38] Kim Y K 2007 J. Chem. Phys. 126 064305
[39] Xu Y C, Du X J, Li T J, Wang L H, Ma Z R and Zhu L F 2020 Plasma Sources Sci. Technol. 29 085005
[40] Du X J, Xu Y C, Wang L H, Li T J, Ma Z R and Zhu L F 2020 J. Phys. B:At. Mol. Opt. Phys. 53 175103
[41] Wang S X and Zhu L F 2022 Chin. Phys. B 31 083401
[42] Mulliken R S 1942 Rev. Mod. Phys. 14 204
[1] State-to-state integral cross sections and rate constants for the N+(3P)+HD→NH+/ND++D/H reaction: Accurate quantum dynamics studies
Hanghang Chen(陈航航), Zijiang Yang(杨紫江), and Maodu Chen(陈茂笃). Chin. Phys. B, 2022, 31(9): 098204.
[2] Integral cross sections for electron impact excitations of argon and carbon dioxide
Shu-Xing Wang(汪书兴) and Lin-Fan Zhu(朱林繁). Chin. Phys. B, 2022, 31(8): 083401.
[3] Elastic electron scattering with CH2Br2 and CCl2Br2: The role of the polarization effects
Xiaoli Zhao(赵小利) and Kedong Wang(王克栋). Chin. Phys. B, 2022, 31(8): 083402.
[4] Spectroscopy and scattering matrices with nitrogen atom: Rydberg states and optical oscillator strengths
Yuhao Zhu(朱宇豪), Rui Jin(金锐), Yong Wu(吴勇), and Jianguo Wang(王建国). Chin. Phys. B, 2022, 31(4): 043103.
[5] A new global potential energy surface of the ground state of SiH2+ (X2A1) system and dynamics calculations of the Si+ + H2 (v0 = 2, j0 = 0) → SiH+ + H reaction
Yong Zhang(张勇), Xiugang Guo(郭秀刚), and Haigang Yang(杨海刚). Chin. Phys. B, 2022, 31(11): 113101.
[6] Elastic electron scattering with formamide-(H2O)n complexes (n=1, 2): Influence of microsolvation on the π* and σ* resonances
Kedong Wang(王克栋), Yan Wang(王言), Jie Liu(刘洁), Yiwen Wang(王怡文), and Haoxing Zhang(张浩兴). Chin. Phys. B, 2021, 30(12): 123401.
[7] Exact quantum dynamics study of the H(2S)+SiH+(X1Σ+) reaction on a new potential energy surface of SiH2+(X2A1)
Wen-Li Zhao(赵文丽), Rui-Shan Tan(谭瑞山), Xue-Cheng Cao(曹学成), Feng Gao(高峰), and Qing-Tian Meng(孟庆田). Chin. Phys. B, 2021, 30(12): 123403.
[8] Mechanism analysis of reaction S+(2D)+H2(X1Σg+)→SH+(X3Σ-)+H(2S) based on the quantum state-to-state dynamics
Jin-Yu Zhang(张金玉), Ting Xu(许婷), Zhi-Wei Ge(葛志伟), Juan Zhao(赵娟), Shou-Bao Gao(高守宝), Qing-Tian Meng(孟庆田). Chin. Phys. B, 2020, 29(6): 063101.
[9] Relativistic electron scattering from freely movable proton/μ+ in the presence of strong laser field
Ningyue Wang(王宁月), Liguang Jiao(焦利光), Aihua Liu(刘爱华). Chin. Phys. B, 2019, 28(9): 093402.
[10] Non-adiabatic quantum dynamical studies of Na(3p)+HD(ν=1, j=0)→NaH/NaD+D/H reaction
Yue-Pei Wen(温月佩), Bayaer Buren(布仁巴雅尔), Mao-Du Chen(陈茂笃). Chin. Phys. B, 2019, 28(6): 063401.
[11] Dynamics of the Au+H2 reaction by time-dependent wave packet and quasi-classical trajectory methods
Yong Zhang(张勇), Chengguo Jiang(姜成果). Chin. Phys. B, 2019, 28(12): 123101.
[12] Selection rules for electric multipole transition of triatomic molecule in scattering experiments
Hong-Chun Tian(田红春), Long-Quan Xu(徐龙泉), Lin-Fan Zhu(朱林繁). Chin. Phys. B, 2018, 27(4): 043101.
[13] Path integral approach to electron scattering in classical electromagnetic potential
Chuang Xu(许闯), Feng Feng(冯锋), Ying-Jun Li(李英骏). Chin. Phys. B, 2016, 25(5): 050303.
[14] Selection rules for electric multipole transition of diatomic molecule in scattering experiments
Zhu Lin-Fan (朱林繁), Tian Hong-Chun (田红春), Liu Ya-Wei (刘亚伟), Kang Xu (康旭), Liu Guo-Xing (刘国兴). Chin. Phys. B, 2015, 24(4): 043101.
[15] Ionization cross sections for electron scattering from metastable rare-gas atoms (Ne* and Ar*)
Zhang Yong-Zhi (张永志), Zhou Ya-Jun (周雅君). Chin. Phys. B, 2013, 22(7): 073402.
No Suggested Reading articles found!