|
|
Theoretical study of (e, 2e) triple differential cross section of 1b3g orbital of ethylene by vibrational multi-center distorted-wave method |
Zhenpeng Wang(王振鹏)1, Maomao Gong(宫毛毛)1,3,†, Xingyu Li(李星宇)1, Songbin Zhang(张松斌)3, and Xiangjun Chen(陈向军)1,2,‡ |
1 Hefei National Research Center for Physical Sciences at Microscale and Department of Modern Physics, University of Science and Technology of China, Hefei 230026, China; 2 Hefei National Laboratory, University of Science and Technology of China, Hefei 230088, China; 3 School of Physics and Information Technology, Shaanxi Normal University, Xi'an 710119, China |
|
|
Abstract The vibrational motions are usually neglected when calculating (e,2e) triple differential cross sections (TDCSs) of molecules. Here, multi-center distorted-wave method (MCDW) has been modified by including molecular vibrations. This vibrational MCDW method is employed to calculate the TDCSs of 1b3g orbital of ethylene at low (100 eV) and medium (250 eV) incident electron energies in coplanar asymmetric kinematic condition. The results show that molecular vibrations significantly influence the angular distributions of the TDCSs, especially in the binary region along momentum transfer near the Bethe ridge.
|
Received: 18 June 2023
Revised: 24 July 2023
Accepted manuscript online: 01 August 2023
|
PACS:
|
02.70.-c
|
(Computational techniques; simulations)
|
|
03.65.-w
|
(Quantum mechanics)
|
|
03.65.Nk
|
(Scattering theory)
|
|
Fund: Project supported by the National Natural Science Foundation of China (Grant Nos. 12004370 and 12127804) and the Strategic Priority Research Program of the Chinese Academy of Sciences (Grant No. XDB34020000). |
Corresponding Authors:
Maomao Gong, Xiangjun Chen
E-mail: gongmm@ustc.edu.cn;xjun@ustc.edu.cn
|
Cite this article:
Zhenpeng Wang(王振鹏), Maomao Gong(宫毛毛), Xingyu Li(李星宇), Songbin Zhang(张松斌), and Xiangjun Chen(陈向军) Theoretical study of (e, 2e) triple differential cross section of 1b3g orbital of ethylene by vibrational multi-center distorted-wave method 2023 Chin. Phys. B 32 110205
|
[1] Taylor J R 1972 Scattering theory:quantum theory of nonrelativistic collisions (Wiley) [2] Hossen K, Ren X, Wang E, Gong M, Li X, Zhang S B, Chen X and Dorn A 2018 J. Phys. B:At. Mol. Opt. Phys. 51 215201 [3] Wang E, Ren X, Gong M, Ali E, Wang Z, Ma C, Madison D, Chen X and Dorn A 2020 Phys. Rev. A 102 062813 [4] Jones D B, Ali E, Ning C G, Ferreira da Silva F, Ingólfsson O, Lopes M C A, Chakraborty H S, Madison D H and Brunger M J 2019 J. Chem. Phys. 151 124306 [5] Jones D B, Ali E, Ning C G, Colgan J, Ingólfsson O, Madison D H and Brunger M J 2016 J. Chem. Phys. 145 164306 [6] Colyer C J, Stevenson M A, Al-Hagan O, Madison D H, Ning C G and Lohmann B 2009 J. Phys. B:At. Mol. Opt. Phys. 42 235207 [7] Milne-Brownlie D S, Cavanagh S J, Lohmann B, Champion C, Hervieux P A and Hanssen J 2004 Phys. Rev. A 69 032701 [8] Cavanagh S J and Lohmann B 1999 J. Phys. B:At. Mol. Opt. Phys. 32 L261 [9] Ullrich J, Moshammer R, Dorn A, Döorner R, Schmidt L P H and Schmidt-Böocking H 2003 Rep. Prog. Phys. 66 1463 [10] Kheifets A S 2005 Phys. Rev. A 71 022704 [11] Kheifets A S and Bray I 2005 Phys. Rev. A 72 022703 [12] Vanroose W, Horner D A, Martín F, Rescigno T N and McCurdy C W 2006 Phys. Rev. A 74 052702 [13] Colgan J, Pindzola M S, Robicheaux F, Kaiser C, Murray A J and Madison D H 2008 Phys. Rev. Lett. 101 233201 [14] Rescigno T N, Baertschy M, Isaacs W A and McCurdy C W 1999 Science 286 2474 [15] Dorn A, Kheifets A, Schröter C D, Najjari B, Höhr C, Moshammer R and Ullrich J 2001 Phys. Rev. Lett. 86 3755 [16] Pindzola M S and Schultz D R 1996 Phys. Rev. A 53 1525 [17] Zatsarinny O and Bartschat K 2011 Phys. Rev. Lett. 107 2011 [18] Gao J, Madison D H and Peacher J L 2005 Phys. Rev. A 72 032721 [19] Gao J, Peacher J L and Madison D H 2005 J. Chem. Phys. 123 204302 [20] Gao J, Madison D H and Peacher J L 2005 J. Chem. Phys. 123 204314 [21] Gao J, Madison D H and Peacher J L 2005 Phys. Rev. A 72 020701 [22] Gao J, Madison D H, Peacher J L, Murray A J and Hussey M J 2006 J. Chem. Phys. 124 194306 [23] Gao J, Madison D H and Peacher J L 2006 J. Phys. B:At. Mol. Opt. Phys. 39 1275 [24] Madison D and Al-Hagan O 2010 J. At. Mol. Opt. Phys. [25] Chaluvadi H, Ning C G and Madison D 2014 Phys. Rev. A 89 062712 [26] Ali E, Nixon K, Murray A, Ning C, Colgan J and Madison D 2015 Phys. Rev. A 92 042711 [27] Jones D B, Ali E, Nixon K L, Limao-Vieira P, Hubin-Franskin M J, Delwiche J, Ning C G, Colgan J, Murray A J, Madison D H, et al. 2015 J. Chem. Phys. 143 184310 [28] Ren X, Amami S, Hossen K, Ali E, Ning C, Colgan J, Madison D and Dorn A 2017 Phys. Rev. A 95 022701 [29] Jones D B, Ali E, Ning C G, Ferreira da Silva F, Ingólfsson O, Lopes M C A, Chakraborty H S, Madison D H and Brunger M J 2019 J. Chem. Phys. 151 124306 [30] Ali E, Chakraborty H S and Madison D H 2020 J. Chem. Phys. 152 124303 [31] Jones D, Ali E, Chakraborty H, Ning C, García G, Madison D and Brunger M 2021 Chem. Phys. Lett. 781 139000 [32] Zhang S b, Li X Y, Wang J G, Qu Y Z and Chen X 2014 Phys. Rev. A 89 052711 [33] Li X, Gong M, Liu L, Wu Y, Wang J, Qu Y and Chen X 2017 Phys. Rev. A 95 012703 [34] Gong M, Li X, Zhang S B, Liu L, Wu Y, Wang J, Qu Y and Chen X 2017 Phys. Rev. A 96 042703 [35] Xu X, Gong M, Li X, Zhang S B and Chen X 2018 J. Chem. Phys. 148 244104 [36] Wang Z, Gong M, Li X, Zhang S B and Chen X 2021 J. Electron Spectrosc. Relat. Phenom. 248 147059 [37] Wang Y, Wang Z, Gong M, Xu C and Chen X 2022 Chin. Phys. B 31 010202 [38] Gong M, Li X, Zhang S B, Niu S, Ren X, Wang E, Dorn A and Chen X 2018 Phys. Rev. A 98 042710 [39] Gong M, Wang Z, Li X, Zhang S B and Chen X 2020 J. Phys. B:At. Mol. Opt. Phys. 54 015206 [40] Mouawad L, Hervieux P A, Cappello C D, Pansanel J, Osman A, Khalil M and Bitar Z E 2017 J. Phys. B:At. Mol. Opt. Phys. 50 215204 [41] Mouawad L, Hervieux P A, Cappello C D, Pansanel J, Robert V and Bitar Z E 2018 J. Phys. B:At. Mol. Opt. Phys. 51 175201 [42] Mouawad L, Hervieux P A, Cappello C D, Pansanel J, Robert V and Bitar Z E 2019 Eur. Phys. J. D 73 76 [43] Mouawad L, Hervieux P A, Cappello C D and Bitar Z E 2019 J. Phys. B:At. Mol. Opt. Phys. 53 025202 [44] Watanabe N, Yamazaki M and Takahashi M 2012 J. Chem. Phys. 137 114301 [45] Watanabe N, Yamazaki M and Takahashi M 2014 J. Chem. Phys. 141 244314 [46] Morini F, Deleuze M S, Watanabe N and Takahashi M 2015 J. Chem. Phys. 142 094308 [47] Tang Y, Shan X, Yang J, Niu S, Zhang Z, Watanabe N, Yamazaki M, Takahashi M and Chen X 2016 J. Phys. Chem. A 120 6855 [48] Tang Y, Shan X, Niu S, Liu Z, Wang E, Watanabe N, Yamazaki M, Takahashi M and Chen X 2017 J. Phys. Chem. A 121 277 [49] Liu Z, Tang Y, Niu S, Shan X, Xu C and Chen X 2020 J. Phys. Chem. A 124 8551 [50] Saito K, Eishiro Y, Nakao Y, Sato H and Sakaki S 2012 Inorg. Chem. 51 2785 [51] Inkinen J, Niskanen J, Sakko A, Ruotsalainen K O, Pylkkänen T, Galambosi S, Hakala M, Monaco G, Hämäläinen K and Huotari S 2014 J. Phys. Chem. A 118 3288 [52] Puzzarini C and Taylor P R 2005 J. Chem. Phys. 122 054315 [53] Arapiraca A F C, Jonsson D and Mohallem J R 2011 J. Chem. Phys. 135 244313 [54] Arapiraca A and Mohallem J 2014 Chem. Phys. Lett. 609 123 [55] Watanabe N, Suzuki D and Takahashi M 2011 J. Chem. Phys. 134 234309 [56] Watanabe N, Hirayama T, Suzuki D and Takahashi M 2013 J. Chem. Phys. 138 184311 [57] Watanabe N and Takahashi M 2014 J. Phys. B:At. Mol. Opt. Phys. 47 155203 [58] Watanabe N, Hirayama T and Takahashi M 2019 Phys. Rev. A 99 062708 [59] Watanabe N and Takahashi M 2020 J. Phys. B:At. Mol. Opt. Phys. 53 075202 [60] Watanabe N and Takahashi M 2021 J. Phys. B:At. Mol. Opt. Phys. 54 135202 [61] Sanna N and Gianturco F 2000 Comput. Phys. Commun. 128 139 [62] Sanna N and Morelli G 2004 Comput. Phys. Commun. 162 51 [63] Sanna N, Baccarelli I and Morelli G 2009 Comput. Phys. Commun. 180 2544 [64] Head-Gordon M, Pople J A and Frisch M J 1988 Chem. Phys. Lett. 153 503 [65] Saebo S and Almlöf J 1989 Chem. Phys. Lett. 154 83 [66] Frisch M J, Head-Gordon M and Pople J A 1990 Chem. Phys. Lett. 166 275 [67] Frisch M J, Head-Gordon M and Pople J A 1990 Chem. Phys. Lett. 166 281 [68] Head-Gordon M and Head-Gordon T 1994 Chem. Phys. Lett. 220 122 [69] Dunning T H 1989 J. Chem. Phys. 90 1007 [70] Frisch M J, Trucks G W, Schlegel H B, Scuseria G E, Robb M A, Cheeseman J R, Scalmani G, Barone V, Petersson G A, Nakatsuji H, et al. 2009 Gaussian 09, Revision A.02, Technical Report [71] Becke A D 1993 J. Chem. Phys. 98 5648 [72] Lee C, Yang W and Parr R G 1989 J. Chem. Phys. 90 1377 [74] Hollebone B, Neville J, Zheng Y, Brion C, Wang Y and Davidson E 1995 Chem. Phys. 196 13 |
No Suggested Reading articles found! |
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
Altmetric
|
blogs
Facebook pages
Wikipedia page
Google+ users
|
Online attention
Altmetric calculates a score based on the online attention an article receives. Each coloured thread in the circle represents a different type of online attention. The number in the centre is the Altmetric score. Social media and mainstream news media are the main sources that calculate the score. Reference managers such as Mendeley are also tracked but do not contribute to the score. Older articles often score higher because they have had more time to get noticed. To account for this, Altmetric has included the context data for other articles of a similar age.
View more on Altmetrics
|
|
|