Please wait a minute...
Chin. Phys. B, 2023, Vol. 32(11): 117503    DOI: 10.1088/1674-1056/acd327
CONDENSED MATTER: ELECTRONIC STRUCTURE, ELECTRICAL, MAGNETIC, AND OPTICAL PROPERTIES Prev   Next  

In-plane spin excitation of skyrmion bags

Shuang Li(李爽)1, Ke-Xin Li(李可欣)1, Zhao-Hua Liu(刘照华)1, Qi-Yuan Zhu(朱起源)2, Chen-Bo Zhao(赵晨博)3, Hu Zhang(张虎)1, Xing-Qiang Shi(石兴强)1, Jiang-Long Wang(王江龙)1, Rui-Ning Wang(王瑞宁)1, Ru-Qian Lian(连如乾)1, Peng-Lai Gong(巩朋来)1, and Chen-Dong Jin(金晨东)1,†
1 Key Laboratory of Optic-Electronic Information and Materials of Hebei Province, Research Center for Computational Physics, College of Physics Science and Technology, Hebei University, Baoding 071002, China;
2 College of Mathematics and Physics, Chongqing University of Science and Technology, Chongqing 401331, China;
3 Department of Materials Science and Engineering, Lanzhou University of Technology, Lanzhou 730050, China
Abstract  Skyrmion bags are spin structures with arbitrary topological charges, each of which is composed of a big skyrmion and several small skyrmions. In this work, by using an in-plane alternating current (AC) magnetic field, we investigate the spin-wave modes of skyrmion bags, which behave differently from the clockwise (CW) rotation mode and the counterclockwise (CCW) rotation mode of skyrmions because of their complex spin topological structures. The in-plane excitation power spectral density shows that each skyrmion bag possesses four resonance frequencies. By further studying the spin dynamics of a skyrmion bag at each resonance frequency, the four spin-wave modes, i.e., a CCW-CW mode, two CW-breathing modes with different resonance strengths, and an inner CCW mode, appear as a composition mode of outer skyrmion-inner skyrmions. Our results are helpful in understanding the in-plane spin excitation of skyrmion bags, which may contribute to the characterization and detection of skyrmion bags, as well as the applications in logic devices.
Keywords:  skyrmion bags      spin-wave mode      power spectral density      micromagnetic simulation  
Received:  24 February 2023      Revised:  05 May 2023      Accepted manuscript online:  06 May 2023
PACS:  75.75.-c (Magnetic properties of nanostructures)  
  75.75.Jn (Dynamics of magnetic nanoparticles)  
  75.78.Cd (Micromagnetic simulations ?)  
  12.39.Dc (Skyrmions)  
Fund: Project supported by the National Natural Science Foundation of China (Grant Nos. 12104124 and 12274111), the Natural Science Foundation of Hebei Province, China (Grant Nos. A2021201001 and A2021201008), the Central Guidance Fund on the Local Science and Technology Development of Hebei Province, China (Grant No. 236Z0601G), the Post-graduate’s Innovation Fund Project of Hebei Province, China (Grant No. CXZZSS2023007), the Advanced Talents Incubation Program of the Hebei University, China (Grant Nos. 521000981395, 521000981423, 521000981394, and 521000981390), the Research Foundation of Chongqing University of Science and technology, China (Grant No. ckrc2019017), and the High-Performance Computing Center of Hebei University, China.
Corresponding Authors:  Chen-Dong Jin     E-mail:  jinchd@hbu.edu

Cite this article: 

Shuang Li(李爽), Ke-Xin Li(李可欣), Zhao-Hua Liu(刘照华), Qi-Yuan Zhu(朱起源), Chen-Bo Zhao(赵晨博), Hu Zhang(张虎), Xing-Qiang Shi(石兴强), Jiang-Long Wang(王江龙), Rui-Ning Wang(王瑞宁), Ru-Qian Lian(连如乾), Peng-Lai Gong(巩朋来), and Chen-Dong Jin(金晨东) In-plane spin excitation of skyrmion bags 2023 Chin. Phys. B 32 117503

[1] Roessler U K, Bogdanov A and Pfleiderer C 2006 Nature 442 797
[2] Seki S, Yu X Z, Ishiwata S and Tokura Y 2012 Science 336 198
[3] Nagaosa N and Tokura Y 2013 Nat. Nanotechnol. 8 899
[4] Kim J V, Garcia-Sanchez F, Sampaio J, Moreau-Luchaire C, Cros V and Fert A 2014 Phys. Rev. B 90 064410
[5] Zhou Y and Ezawa M 2014 Nat. Commun. 5 4652
[6] Jiang W J, Upadhyaya P, Zhang W, Yu G, Jungfleisch M B, Fradin F Y, Pearson J E, Tserkovnyak Y, Wang K L, Heinonen O, te Velthuis S G E and Hoffmann A 2015 Science 349 283
[7] Du H F, Che R C, Kong L Y, Zhao X B, Jin C M, Wang C, Yang J Y, Ning W, Li R W, Jin C Q, Chen X H, Zang J D, Zhang Y H and Tian M L 2015 Nat. Commun. 6 8504
[8] Boulle O, Vogel J, Yang H, Pizzini S, de Souza Chaves D, Locatelli A, Menteş T O, Sala A, Buda-Prejbeanu L D, Klein O, Belmeguenai M, Roussigné Y, Stashkevich A, Chérif S M, Aballe L, Foerster M, Chshiev M, Auffret S, Miron I M and Gaudin G 2016 Nat. Nanotechnol. 11 449
[9] Jin C D, Song C K, Wang J S, Xia H Y, Wang J B and Liu Q F 2017 J. Appl. Phys. 122 223901
[10] Yang Y C, Liu T, Bi L and Deng L J 2021 J. Alloys Compd. 860 158235
[11] Wang X R, Hu X C and Wu H T 2021 Commun. Phys. 4 142
[12] Wu H T, Hu X C, Jing K Y and Wang X R 2021 Commun. Phys. 4 210
[13] Ye C, Li L L, Shu Y, Li Q R, Xia J, Hou Z P, Zhou Y, Liu X X, Yang Y Y and Zhao G P 2022 Rare Metals 41 2200
[14] Du H F and Wang X R 2022 Chin. Phys. B 31 087507
[15] Ma Y X, Wang J N, Zeng Z Z, Yuan Y Y, Yang J X, Liu H B, Zhang S F, Wei J W, Wang J B, Jin C D and Liu Q F 2022 J. Magn. Magn. Mater. 564 170061
[16] Jing D Y, Wang H Y, Guo W X and Liu W M 2023 Chin. Phys. B 32 017401
[17] Lin T, Wang C X, Qiu Z Y, Chen C, Xing T, Sun L, Liang J H, Wu Y Z, Shi Z and Lei N 2023 Chin. Phys. B 32 027505
[18] Chui C P and Zhou Y 2015 AIP Adv. 5 097126
[19] Jin C D, Song C K, Wang J B and Liu Q F 2016 Appl. Phys. Lett. 109 182404
[20] Luo S J, Zhang Y, Shen M K, Ou-Yang J, Yan B Q, Yang X F, Chen S, Zhu B P and You L 2017 Appl. Phys. Lett. 110 112402
[21] Jin C D, Wang J B, Wang W W, Song C K, Wang J S, Xia H Y and Liu Q F 2018 Phys. Rev. Appl. 9 044007
[22] Hirohata A, Yamada K, Nakatani Y, Prejbeanu I L, Dieny B, Pirro P and Hillebrands B 2020 J. Magn. Magn. Mater. 509 166711
[23] Shen L C, Xia J, Zhao G P, Zhang X C, Ezawa M, Tretiakov O A, Liu X X and Zhou Y 2018 Phys. Rev. B 98 134448
[24] Shen L C, Xia J, Zhao G P, Zhang X C, Ezawa M, Tretiakov O A, Liu X X and Zhou Y 2019 Appl. Phys. Lett. 114 042402
[25] Liang X, Xia J, Zhang X C, Ezawa M, Tretiakov O A, Liu X X, Qiu L, Zhao G P and Zhou Y 2021 Appl. Phys. Lett. 119 062403
[26] Petrova O and Tchernyshyov O 2011 Phys. Rev. B 84 214433
[27] Mochizuki M 2012 Phys. Rev. Lett. 108 017601
[28] Iwasaki J, Beekman A J and Nagaosa N 2014 Phys. Rev. B 89 064412
[29] Zhang X C, Ezawa M, Xiao D, Zhao G P, Liu Y W and Zhou Y 2015 Nanotechnology 26 225701
[30] Liu Y Z, Yin G, Zang J D, Shi J and Lake R K 2015 Appl. Phys. Lett. 107 152411
[31] Zhang X C, Muller J, Xia J, Garst M, Liu X X and Zhou Y 2017 New J. Phys. 19 065001
[32] Yokouchi T, Hoshino S, Kanazawa N, Kikkawa A, Morikawa D, Shibata K, Arima T, Taguchi Y, Kagawa F, Nagaosa N and Tokura Y 2018 Sci. Adv. 4 8
[33] Seki S, Garst M, Waizner J, Takagi R, Khanh N D, Okamura Y, Kondou K, Kagawa F, Otani Y and Tokura Y 2020 Nat. Commun. 11 256
[34] Zhang X C, Xia J, Tretiakov O A, Diep H T, Zhao G P, Yang J B, Zhou Y, Ezawa M and Liu X X 2021 Phys. Rev. B 104 L220406
[35] Chen J L, Yu H M and Gubbiotti G 2022 J. Phys. D 55 123001
[36] Mruczkiewicz M, Krawczyk M and Guslienko K Y 2017 Phys. Rev. B 95 094414
[37] Song C K, Ma Y X, Jin C D, Wang J S, Xia H Y, Wang J B and Liu Q F 2019 New J. Phys. 21 083006
[38] Vigo-Cotrina H 2021 J. Magn. Magn. Mater. 537 168166
[39] Bo L, Ji L Z, Hu C L, Zhao R Z, Li Y X, Zhang J and Zhang X F 2021 Appl. Phys. Lett. 119 212408
[40] Zeng Z Z, Song C K, Wang J B and Liu Q F 2022 J. Phys. D 55 185001
[41] Jin C D, Li S, Zhang H, Wang R N, Wang J L, Lian R Q, Gong P L and Shi X Q 2022 New J. Phys. 24 043005
[42] Jin C D, Li S, Zhang H, Wang R N, Wang J L, Lian R Q, Gong P L and Shi X Q 2022 New J. Phys. 24 073013
[43] Savchenko A S, Kuchkin V M, Rybakov F N, Blügel S and Kiselev N S 2022 APL Mater. 10 071111
[44] Xing L D, Hua D Y and Wang W W 2018 J. Appl. Phys. 124 123904
[45] Leonov A O and Pappas C 2019 Phys. Rev. B 99 144410
[46] Foster D, Kind C, Ackerman P J, Tai J S B, Dennis M R and Smalyukh I I 2019 Nat. Phys. 15 655
[47] Kuchkin V M, Barton-Singer B, Rybakov F N, Blugel S, Schroers B J and Kiselev N S 2020 Phys. Rev. B 102 144422
[48] Zeng Z Z, Zhang C L, Jin C D, Wang J N, Song C K, Ma Y X, Liu Q F and Wang J B 2020 Appl. Phys. Lett. 117 172404
[49] Finazzi M, Savoini M, Khorsand A R, Tsukamoto A, Itoh A, Duo L, Kirilyuk A, Rasing T and Ezawa M 2013 Phys. Rev. Lett. 110 177205
[50] Zhang X C, Xia J, Zhou Y, Wang D W, Liu X X, Zhao W S and Ezawa M 2016 Phys. Rev. B 94 094420
[51] Tang J, Wu Y D, Wang W W, Kong L Y, Lv B Y, Wei W S, Zang J D, Tian M L and Du H F 2021 Nat. Nanotechnol. 16 1086
[52] Tang J, Wu Y D, Kong L Y, Wang W W, Chen Y T, Wang Y H, Soh Y, Xiong Y M, Tian M L and Du H F 2021 Natl. Sci. Rev. 8 7
[53] Kind C, Friedemann S and Read D 2020 Appl. Phys. Lett. 116 022413
[54] Kind C and Foster D 2021 Phys. Rev. B 103 L100413
[55] Kuchkin V M, Chichay K, Barton-Singer B, Rybakov F N, Blügel S, Schroers B J and Kiselev N S 2021 Phys. Rev. B 104 165116
[56] Göbel B, Schäffer A F, Berakdar J, Mertig I and Parkin S S P 2019 Sci. Rep. 9 12119
[57] Donahue M J and Porter D G http://math.nist.gov/oommf[2023-02-24]
[58] Sampaio J, Cros V, Rohart S, Thiaville A and Fert A 2013 Nat. Nanotechnol. 8 839
[59] Xia J, Zhang X C, Ezawa M, Shao Q M, Liu X X and Zhou Y 2020 Appl. Phys. Lett. 116 022407
[60] Moutafis C, Komineas S and Bland J A C 2009 Phys. Rev. B 79 224429
[61] Li Z X, Chen Y F, Zhou Z W, Nie Y Z, Xia Q L, Wang D W and Guo G H 2017 J. Magn. Magn. Mater. 433 216
[62] Ikka M, Takeuchi A and Mochizuki M 2018 Phys. Rev. B 98 184428
[63] Okamura Y, Kagawa F, Mochizuki M, Kubota M, Seki S, Ishiwata S, Kawasaki M, Onose Y and Tokura Y 2013 Nat. Commun. 4 2391
  • 1. .mp4(2696KB)

  • 2. .mp4(2704KB)

  • 3. .mp4(2698KB)

  • 4. .mp4(2334KB)

[1] Magnonic band-pass and band-stop filters with structurally modulated waveguides
Lai-He Feng(冯来和), Mang-Yuan Ma(马莽原), Zhi-Hua Liu(刘智华), Kai-Le Xie(解凯乐), and Fu-Sheng Ma(马付胜). Chin. Phys. B, 2023, 32(6): 067503.
[2] Micromagnetic study of magnetization reversal in inhomogeneous permanent magnets
Zhi Yang(杨质), Yuanyuan Chen(陈源源), Weiqiang Liu(刘卫强), Yuqing Li(李玉卿), Liying Cong(丛利颖), Qiong Wu(吴琼), Hongguo Zhang(张红国), Qingmei Lu(路清梅), Dongtao Zhang(张东涛), and Ming Yue(岳明). Chin. Phys. B, 2023, 32(4): 047504.
[3] Multi-segmented nanowires for vortex magnetic domain wall racetrack memory
M Al Bahri, M Al Hinaai, and T Al Harthy. Chin. Phys. B, 2023, 32(12): 127508.
[4] Optimization of the grain boundary diffusion process by doping gallium and zirconium in Nd-Fe-B sintered magnets
Zhiteng Li(李之藤), Haibo Xu(徐海波), Feng Liu(刘峰), Rongshun Lai(赖荣舜), Renjie Wu(武仁杰), Zhibin Li(李志彬), Yangyang Zhang(张洋洋), and Qiang Ma(马强). Chin. Phys. B, 2023, 32(10): 107503.
[5] Skyrmion-based logic gates controlled by electric currents in synthetic antiferromagnet
Linlin Li(李林霖), Jia Luo(罗佳), Jing Xia(夏静), Yan Zhou(周艳), Xiaoxi Liu(刘小晰), and Guoping Zhao(赵国平). Chin. Phys. B, 2023, 32(1): 017506.
[6] Influence of Dzyaloshinskii-Moriya interaction on the magnetic vortex reversal in an off-centered nanocontact geometry
Hua-Nan Li(李化南), Tong-Xin Xue(薛彤鑫), Lei Chen(陈磊), Ying-Rui Sui(隋瑛瑞), and Mao-Bin Wei(魏茂彬). Chin. Phys. B, 2022, 31(9): 097501.
[7] Discrete modulational instability and bright localized spin wave modes in easy-axis weak ferromagnetic spin chains involving the next-nearest-neighbor coupling
Jiayu Xie(谢家玉), Zhihao Deng(邓志豪), Xia Chang(昌霞), Bing Tang(唐炳). Chin. Phys. B, 2019, 28(7): 077501.
[8] Micromagnetic simulations of reversal magnetization in cerium-containing magnets
Lei Li(李磊), Shengzhi Dong(董生智), Hongsheng Chen(陈红升), Ruijiao Jiang(姜瑞姣), Dong Li(李栋), Rui Han(韩瑞), Dong Zhou(周栋), Minggang Zhu(朱明刚), Wei Li(李卫), Wei Sun(孙威). Chin. Phys. B, 2019, 28(3): 037502.
[9] Magnetic vortex gyration mediated by point-contact position
Hua-Nan Li(李化南), Zi-Wei Fan(笵紫薇), Jia-Xin Li(李佳欣), Yue Hu(胡月), Hui-Lian Liu(刘惠莲). Chin. Phys. B, 2019, 28(10): 107503.
[10] Dependence of switching process on the perpendicular magnetic anisotropy constant in P-MTJ
Mao-Sen Yang(杨茂森), Liang Fang(方粮), Ya-Qing Chi(池雅庆). Chin. Phys. B, 2018, 27(9): 098504.
[11] Interfacial effect on the reverse of magnetization and ultrafast demagnetization in Co/Ni bilayers with perpendicular magnetic anisotropy
Zi-Zhao Gong(弓子召), Wei Zhang(张伟), Wei He(何为), Xiang-Qun Zhang(张向群), Yong Liu(刘永), Zhao-Hua Cheng(成昭华). Chin. Phys. B, 2018, 27(5): 057501.
[12] Dynamic nucleation of domain-chains in magnetic nanotracks
Xiangjun Jin(金香君), Yong Li(李勇), Fusheng Ma(马付胜). Chin. Phys. B, 2018, 27(12): 127504.
[13] Realization of artificial skyrmion in CoCrPt/NiFe bilayers
Yi Liu(刘益), Yong-Ming Luo(骆泳铭), Zheng-Hong Qian(钱正洪), Jian-Guo Zhu(朱建国). Chin. Phys. B, 2018, 27(12): 127503.
[14] Effects of dipolar interactions on magnetic properties of Co nanowire arrays
Hong-Jian Li(李洪健), MingYue(岳明), Qiong Wu(吴琼), Yi Peng(彭懿), Yu-Qing Li(李玉卿), Wei-Qiang Liu(刘卫强), Dong-Tao Zhang(张东涛), Jiu-Xing Zhang(张久兴). Chin. Phys. B, 2017, 26(11): 117503.
[15] Faster vortex core switching with lower current density using three-nanocontact spin-polarized currents in a confined structure
Hua-Nan Li(李化南), Zhong Hua(华中), Dong-Fei Li(李东飞). Chin. Phys. B, 2017, 26(1): 017502.
No Suggested Reading articles found!