Please wait a minute...
Chin. Phys. B, 2023, Vol. 32(11): 113101    DOI: 10.1088/1674-1056/acec46
Special Issue: SPECIAL TOPIC — Celebrating the 100th Anniversary of Physics Discipline of Northwest University
SPECIAL TOPIC—Celebrating the 100th Anniversary of Physics Discipline of Northwest University Prev   Next  

Low-lying electronic states of osmium monoxide OsO

Wen Yan(严汶)1,2 and Wenli Zou(邹文利)1,2,†
1 Institute of Modern Physics, Northwest University, Xi'an 710127, China;
2 Shaanxi Key Laboratory for Theoretical Physics Frontiers, Xi'an 710127, China
Abstract  The ground state of osmium monoxide (OsO) has long been controversial. In this paper, the low-lying Λ-S and Ω electronic states of OsO have been comprehensively studied by the high-precision multi-reference calculations. The ground state of OsO is unexpectedly the closed-shell 1Σ+ state with a double bond instead of the previously reported 3Φ or 5Σ+ state; after including the spin-orbit coupling effects, the ground state becomes 3Π2. With the help of the theoretical spectroscopic constants and transition dipole moments, the emission spectra in the region of 405 nm-875 nm are assigned. Our results will facilitate the future studies of absorption and emission spectra of OsO.
Keywords:  transition dipole moment      multi-reference second-order perturbation theory      spin-orbit coupling      exact two-component  
Received:  22 June 2023      Revised:  21 July 2023      Accepted manuscript online:  01 August 2023
PACS:  31.15.A- (Ab initio calculations)  
  31.15.aj (Relativistic corrections, spin-orbit effects, fine structure; hyperfine structure)  
  31.15.am (Relativistic configuration interaction (CI) and many-body perturbation calculations)  
  36.20.Kd (Electronic structure and spectra)  
Fund: Project supported by the National Natural Science Foundation of China (Grant No. 22073072) and the Double FirstClass University Construction Project of Northwest University.
Corresponding Authors:  Wenli Zou     E-mail:  zouwl@nwu.edu.cn

Cite this article: 

Wen Yan(严汶) and Wenli Zou(邹文利) Low-lying electronic states of osmium monoxide OsO 2023 Chin. Phys. B 32 113101

[1] Liu Y, Wang L, Lei Y, Suo B, Zhang Y and Zou W 2023 Chem. Phys. Lett. 829 140692
[2] Balfour W J and Ram R S 1984 J. Mol. Spectrosc. 105 360
[3] Gatterer A, Junkes J, Salpeter E W and Rosen B 1957 Molecular Spectra of Metallic Oxides (Vatican City:Specola Vaticana)
[4] Raziunas V, Macur G and Katz S 1965 J. Chem. Phys. 43 1010
[5] Weltner W Jr 1978 Ber. Bunsenges. Phys. Chem. 82 80
[6] Zhou M, Citra A, Liang B and Andrews L 2000 J. Phys. Chem. A 104 3457
[7] Yao C, Guan W, Song P, Su Z M, Feng J D, Yan L K and Wu Z J 2007 Theor. Chem. Acc. 117 115
[8] Dai G L and Wang C F 2012 Russ. J. Phys. Chem. A 86 798
[9] Liu W and Peng D 2009 J. Chem. Phys. 131 031104
[10] Peng D and Reiher M 2012 Theor. Chem. Acc. 131 1081
[11] Zobel J P, Widmark P O and Veryazov V 2020 J. Chem. Theory Comput. 16 278
[12] Zobel J P, Widmark P O and Veryazov V 2021 J. Chem. Theory Comput. 17 3233
[13] Battaglia S and Lindh R 2021 J. Chem. Phys. 154 034102
[14] Angeli C, Borini S, Cestari M and Cimiraglia R 2004 J. Chem. Phys. 121 4043
[15] Forsberg N and Malmqvist P Å 1997 Chem. Phys. Lett. 274 196
[16] Ghigo G, Roos B O and Malmqvist P Å 2004 Chem. Phys. Lett. 396 142
[17] Malmqvist P Å and Roos B O 1989 Chem. Phys. Lett. 155 189
[18] Schimmelpfennig B 1996 AMFI:atomic mean field integral program (Stockholm:University of Stockholm, Sweden)
[19] Roos B O and Malmqvist P Å 2004 Phys. Chem. Chem. Phys. 6 2919
[20] Zhang Y, Suo B, Wang Z, Zhang N, Li Z, Lei Y, Zou W, Gao J, Peng D, Pu Z, Xiao Y, Sun Q, Wang F, Ma Y, Wang X, Guo Y and Liu W 2020 J. Chem. Phys. 152 064113
[21] Suo B, Lei Y, Han H and Wang Y 2018 Mol. Phys. 116 1051
[22] Fdez Galván I, Vacher M, Alavi A, et al. 2019 J. Chem. Theory Comput. 15 5925
[23] Aquilante F, Autschbach J, Baiardi A, et al. 2020 J. Chem. Phys. 152 214117
[24] Le Roy R J 2017 J. Quantum Spectrosc. Radiat. Transfer 186 167
[25] Liu W and Hoffmann M R 2014 Theor. Chem. Acc. 133 1481
[26] Song Y, Guo Y, Lei Y, Zhang N and Liu W 2021 Top. Curr. Chem. 379 43
[27] Glendening E D, Badenhoop J K, Reed A E, Carpenter J E, Bohmann J A, Morales C M, Landis C R and Weinhold F 2013 NBO version 6.0 (Theoretical Chemistry Institute, University of Wisconsin, Madison, WI)
[28] Kraka E, Larsson J A and Cremer D 2010 Computational Spectroscopy, ed. Grunenberg J (New York:Wiley) pp. 105-149
[29] Kalescky R, Kraka E and Cremer D 2013 J. Phys. Chem. A 117 8981
[30] Herzberg G 1950 Molecular Spectra and Molecular Structure, Vol. I, Spectra of Diatomic Molecules, 2nd Edn. (Princeton:D. Van Nostrand) pp. 18-21
[31] Bai X L, Zhang X D, Zhang F Q and Steimle T C 2022 Chin. Phys. B 31 053301
[1] Ab initio nonadiabatic molecular dynamics study on spin-orbit coupling induced spin dynamics in ferromagnetic metals
Wansong Zhu(朱万松), Zhenfa Zheng(郑镇法), Qijing Zheng(郑奇靖), and Jin Zhao(赵瑾). Chin. Phys. B, 2024, 33(1): 016301.
[2] Customizing topological phases in the twisted bilayer superconductors with even-parity pairings
Conghao Lin(林丛豪), Chuanshuai Huang(黄传帅), and Xiancong Lu(卢仙聪). Chin. Phys. B, 2023, 32(8): 087401.
[3] Anomalous Josephson effect between d-wave superconductors through a two-dimensional electron gas with both Rashba spin-orbit coupling and Zeeman splitting
Bin-Hao Du(杜彬豪), Mou Yang(杨谋), and Liang-Bin Hu(胡梁宾). Chin. Phys. B, 2023, 32(7): 077201.
[4] Ta thickness effect on field-free switching and spin-orbit torque efficiency in a ferromagnetically coupled Co/Ta/CoFeB trilayer
Zhongshu Feng(冯重舒), Changqiu Yu(于长秋), Haixia Huang(黄海侠), Haodong Fan(樊浩东),Mingzhang Wei(卫鸣璋), Birui Wu(吴必瑞), Menghao Jin(金蒙豪), Yanshan Zhuang(庄燕山),Ziji Shao(邵子霁), Hai Li(李海), Jiahong Wen(温嘉红), Jian Zhang(张鉴), Xuefeng Zhang(张雪峰),Ningning Wang(王宁宁), Sai Mu(穆赛), and Tiejun Zhou(周铁军). Chin. Phys. B, 2023, 32(4): 048504.
[5] Coexistence of giant Rashba spin splitting and quantum spin Hall effect in H-Pb-F
Wenming Xue(薛文明), Jin Li(李金), Chaoyu He(何朝宇), Tao Ouyang(欧阳滔), Xiongying Dai(戴雄英), and Jianxin Zhong(钟建新). Chin. Phys. B, 2023, 32(3): 037101.
[6] Electrical manipulation of a hole ‘spin’-orbit qubit in nanowire quantum dot: The nontrivial magnetic field effects
Rui Li(李睿) and Hang Zhang(张航). Chin. Phys. B, 2023, 32(3): 030308.
[7] Phonon dichroism in proximitized graphene
Wen-Yu Shan(单文语). Chin. Phys. B, 2023, 32(10): 106301.
[8] Perspectives of spin-valley locking devices
Lingling Tao(陶玲玲). Chin. Phys. B, 2023, 32(10): 107306.
[9] Superconducting properties of the C15-type Laves phase ZrIr2 with an Ir-based kagome lattice
Qing-Song Yang(杨清松), Bin-Bin Ruan(阮彬彬), Meng-Hu Zhou(周孟虎), Ya-Dong Gu(谷亚东), Ming-Wei Ma(马明伟), Gen-Fu Chen(陈根富), and Zhi-An Ren(任治安). Chin. Phys. B, 2023, 32(1): 017402.
[10] Majorana zero modes induced by skyrmion lattice
Dong-Yang Jing(靖东洋), Huan-Yu Wang(王寰宇), Wen-Xiang Guo(郭文祥), and Wu-Ming Liu(刘伍明). Chin. Phys. B, 2023, 32(1): 017401.
[11] Spin-orbit coupling adjusting topological superfluid of mass-imbalanced Fermi gas
Jian Feng(冯鉴), Wei-Wei Zhang(张伟伟), Liang-Wei Lin(林良伟), Qi-Peng Cai(蔡启鹏), Yi-Cai Zhang(张义财), Sheng-Can Ma(马胜灿), and Chao-Fei Liu(刘超飞). Chin. Phys. B, 2022, 31(9): 090305.
[12] Gap solitons of spin-orbit-coupled Bose-Einstein condensates in $\mathcal{PT}$ periodic potential
S Wang(王双), Y H Liu(刘元慧), and T F Xu(徐天赋). Chin. Phys. B, 2022, 31(7): 070306.
[13] Influence of Rashba spin-orbit coupling on Josephson effect in triplet superconductor/two-dimensional semiconductor/triplet superconductor junctions
Bin-Hao Du(杜彬豪), Man-Ni Chen(陈嫚妮), and Liang-Bin Hu(胡梁宾). Chin. Phys. B, 2022, 31(7): 077201.
[14] Anderson localization of a spin-orbit coupled Bose-Einstein condensate in disorder potential
Huan Zhang(张欢), Sheng Liu(刘胜), and Yongsheng Zhang(张永生). Chin. Phys. B, 2022, 31(7): 070305.
[15] Vortex chains induced by anisotropic spin-orbit coupling and magnetic field in spin-2 Bose-Einstein condensates
Hao Zhu(朱浩), Shou-Gen Yin(印寿根), and Wu-Ming Liu(刘伍明). Chin. Phys. B, 2022, 31(6): 060305.
No Suggested Reading articles found!