Please wait a minute...
Chin. Phys. B, 2023, Vol. 32(11): 110306    DOI: 10.1088/1674-1056/acf5d7
RAPID COMMUNICATION Prev   Next  

Direct measurement of nonlocal quantum states without approximation

Gang Yang(杨冈), Ran Yang(杨然), Yan-Xiao Gong(龚彦晓), and Shi-Ning Zhu(祝世宁)
National Laboratory of Solid State Microstructure, School of Physics and Collaborative Innovation Center of Advanced Microstructures, Nanjing University, Nanjing 210093, China
Abstract  Efficient acquiring information from a quantum state is important for research in fundamental quantum physics and quantum information applications. Instead of using standard quantum state tomography method with reconstruction algorithm, weak values were proposed to directly measure density matrix elements of quantum state. Recently, similar to the concept of weak value, modular values were introduced to extend the direct measurement scheme to nonlocal quantum wavefunction. However, this method still involves approximations, which leads to inherent low precision. Here, we propose a new scheme which enables direct measurement for ideal value of the nonlocal density matrix element without taking approximations. Our scheme allows more accurate characterization of nonlocal quantum states, and therefore has greater advantages in practical measurement scenarios.
Keywords:  direct measurement      quantum tomography      nonlocal quantum state  
Received:  11 August 2023      Revised:  31 August 2023      Accepted manuscript online:  01 September 2023
PACS:  03.65.Wj (State reconstruction, quantum tomography)  
  03.65.Ud (Entanglement and quantum nonlocality)  
  03.67.Mn (Entanglement measures, witnesses, and other characterizations)  
Fund: Project supported by National Key Research and Development Program of China (Grant No. 2019YFA0705000) and the National Natural Science Foundation of China (Grant No. 11974178).
Corresponding Authors:  Yan-Xiao Gong     E-mail:  gongyanxiao@nju.edu.cn

Cite this article: 

Gang Yang(杨冈), Ran Yang(杨然), Yan-Xiao Gong(龚彦晓), and Shi-Ning Zhu(祝世宁) Direct measurement of nonlocal quantum states without approximation 2023 Chin. Phys. B 32 110306

[1] Smithey D T, Beck M, Raymer M G and Faridani A 1993 Phys. Rev. Lett. 70 1244
[2] Breitenbach G, Schiller S and Mlynek J 1997 Nature 387 471
[3] James D, Kwiat P G, Munro W J and White A G 2001 Phys. Rev. A 64 052312
[4] D'Ariano G M, Paris M G and Sacchi M F 2003 Advances in imaging and electron physics 128 206
[5] Resch K J, Walther P and Zeilinger A 2005 Phys. Rev. Lett. 94 070402
[6] Sosa-Martinez H, Lysne N K, Baldwin C H, Kalev A, Deutsch I H and Jessen P S 2017 Phys. Rev. Lett. 119 150401
[7] Gross D, Liu Y K, Flammia S T, Becker S and Eisert J 2010 Phys. Rev. Lett. 105 150401
[8] Shabani A, Kosut R L, Mohseni M, Rabitz H, Broome M A, Almeida M P, Fedrizzi A and White A G 2011 Phys. Rev. Lett. 106 100401
[9] Schwemmer C, Tóth G, Niggebaum A, Moroder T, Gross D, Gühne O and Weinfurter H 2014 Phys. Rev. Lett. 113 040503
[10] Tonolini F, Chan S, Agnew M, Lindsay A and Leach J 2014 Sci. Rep. 4 1
[11] Kalev A, Kosut R L and Deutsch I H 2015 NPJ Quantum Inf. 1 1
[12] Banaszek K, Cramer M and Gross D 2013 New J. Phys. 15 125020
[13] Banaszek K, D'ariano G M, Paris M G A and Sacchi M F 1999 Phys. Rev. A 61 010304
[14] Lundeen J S, Sutherland B, Patel A, Stewart C and Bamber C 2011 Nature 474 188
[15] Lundeen J S and Bamber C 2012 Phys. Rev. Lett. 108 070402
[16] Wu S J 2013 Sci. Rep 3 1193
[17] Salvail J Z, Agnew M, Johnson A S, Bolduc E, Leach J and Boyd R W 2013 Nat. Photonic 7 316
[18] Bamber C and Lundeen J S 2014 Phys. Rev. Lett. 112 070405
[19] Thekkadath G S and Giner L, Chalich Y, Horton M J, Banker J and Lundeen J S 2016 Phys. Rev. Lett. 117 120401
[20] Zhang C R, Hu M J, Hou Z B, Tang J F, Zhu J, Xiang G Y, Li C F, Guo G C and Zhang Y S 2020 Phys. Rev. A 101 012119
[21] Mirhosseini M, Magaṇa-Loaiza O S, Rafsanjani S M H and Boyd R W 2014 Phys. Rev. Lett. 113 090402
[22] Shi Z M, Mirhosseini M, Margiewicz J, Malik M, Rivera F, Zhu Z Y and Boyd R W 2015 Optica 2 388
[23] Zhou Y Y, Zhao J P, Hay D, McGonagle K, Boyd R W and Shi Z M 2021 Phys. Rev. Lett. 127 040402
[24] Malik M, Mirhosseini M, Lavery M P J, Leach J, Padgett M J and Boyd R W 2014 Nat. Commun. 5 3115
[25] Debmalya D and Arvind 2014 Phys. Rev. A 89 062121
[26] Maccone L and Rusconi C C 2014 Phys. Rev. A 89 022122
[27] Zou P, Zhang Z M and Song W 2015 Phys. Rev. A 91 052109
[28] Calderaro L, Foletto G, Dequal D, Villoresi P and Vallone G 2018 Phys. Rev. Lett. 121 230501
[29] Vallone G and Dequal D 2016 Phys. Rev. Lett. 116 040502
[30] Zhu X M, Zhang Y X and Wu S J 2016 Phys. Rev. A 93 062304
[31] Ogawa K, Yasuhiko O, Kobayashi H, Nakanishi T and Tomita A 2019 New J. Phys. 21 043013
[32] Pan W W, Xu X Y, Kedem Y, Wang Q Q, Chen Z, Jan M, S K, Xu J S, Han Y J and Li C F 2019 Phys. Rev. Lett. 123 150402
[33] Lundeen J S and Resch K J 2005 Phys. Lett. A 334 337
[34] Kedem Y and Vaidman L 2010 Phys. Rev. Lett. 105 230401
[35] Turek Y 2020 J. Phys. Commun. 4 075007
[1] Quantum metrology
Xiang Guo-Yong (项国勇), Guo Guang-Can (郭光灿). Chin. Phys. B, 2013, 22(11): 110601.
[2] The Fourier slice transformation of the Wigner operator and the quantum tomogram of the density operator
Wang Tong-Tong(王彤彤) and Fan Hong-Yi(范洪义) . Chin. Phys. B, 2012, 21(3): 034203.
No Suggested Reading articles found!