Please wait a minute...
Chin. Phys. B, 2023, Vol. 32(11): 110704    DOI: 10.1088/1674-1056/acf5d5
Special Issue: Featured Column — INSTRUMENTATION AND MEASUREMENT
INSTRUMENTATION AND MEASUREMENT Prev   Next  

A combined magnetic field stabilization system for improving the stability of 40Ca+ optical clock

Mengyan Zeng(曾孟彦)1,2,3,†, Zixiao Ma(马子晓)2,3,4,†, Ruming Hu(胡如明)2,3,4, Baolin Zhang(张宝林)2,3, Yanmei Hao(郝艳梅)2,3,4, Huaqing Zhang(张华青)2,3, Yao Huang(黄垚)2,3, Hua Guan(管桦)2,3,5,‡, and Kelin Gao(高克林)2,3,§
1 Huazhong University of Science and Technology, Wuhan 430074, China;
2 State Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics, Innovation Academy for Precision Measurement Science and Technology, Chinese Academy of Sciences, Wuhan 430071, China;
3 Key Laboratory of Atomic Frequency Standards, Innovation Academy for Precision Measurement Science and Technology, Chinese Academy of Sciences, Wuhan 430071, China;
4 University of Chinese Academy of Sciences, Beijing 100049, China;
5 Wuhan Institute of Quantum Technology, Wuhan 430206, China
Abstract  Future applications of portable 40Ca+ optical clocks require reliable magnetic field stabilization to improve frequency stability, which can be achieved by implementing an active and passive magnetic field noise suppression system. On the one hand, we have optimized the magnetic shielding performance of the portable optical clock by reducing its apertures and optimizing its geometry; on the other hand, we have introduced an active magnetic field noise suppression system to further suppress the magnetic field noise experienced by the ions. These efforts reduced the ambient magnetic field noise by about 10000 times, significantly reduced the linewidth of the clock transition spectrum, improved the stability of the portable 40Ca+ optical clock, and created the conditions for using portable optical clocks in non-laboratory magnetic field environments. This active magnetic field suppression scheme has the advantages of simple installation and wide applicability.
Keywords:  40Ca+ optical clock      magnetic field compensation      frequency stability  
Received:  13 July 2023      Revised:  23 August 2023      Accepted manuscript online:  01 September 2023
PACS:  07.55.Nk (Magnetic shielding in instruments)  
  95.55.Sh (Auxiliary and recording instruments; clocks and frequency standards)  
Fund: This work is supported by the National Key R&D Program of China (Grant Nos. 2022YFB3904001, 2022YFB3904004, and 2018YFA0307500), the National Natural Science Foundation of China (Grant Nos. 12022414 and 12121004), the CAS Youth Innovation Promotion Association (Grant Nos. Y201963 and Y2022099), the Natural Science Foundation of Hubei Province (Grant No. 2022CFA013), the CAS Project for Young Scientists in Basic Research (Grant No. YSBR-055), and the Interdisciplinary Cultivation Project of the Innovation Academy for Precision Measurement of Science and Technology (Grant No. S21S2201).
Corresponding Authors:  Hua Guan, Kelin Gao     E-mail:  guanhua@apm.ac.cn;klgao@apm.ac.cn

Cite this article: 

Mengyan Zeng(曾孟彦), Zixiao Ma(马子晓), Ruming Hu(胡如明), Baolin Zhang(张宝林), Yanmei Hao(郝艳梅), Huaqing Zhang(张华青), Yao Huang(黄垚), Hua Guan(管桦), and Kelin Gao(高克林) A combined magnetic field stabilization system for improving the stability of 40Ca+ optical clock 2023 Chin. Phys. B 32 110704

[1] Brewer S M, Chen J S, Hankin A M, Clements E R, Chou C W, Wineland D J, Hume D B and Leibrandt D R 2019 Phy. Rev. Lett. 123 033201
[2] Cui K F, Chao S J, Sun C L, Wang S M, Zhang P, Wei Y F, Yuan J B, Cao J, Shu H L and Huang X R 2022 Eur. Phys. J. D 76 140
[3] Huntemann N, Sanner C, Lipphardt B, Tamm C and Peik E 2016 Phys. Rev. Lett. 116 063001
[4] Huang Y, Zhang B L, Zeng M Y, Hao Y M, Ma Z X, Zhang H Q, Guan H, Chen Z, Wang M and Gao K L 2022 Phy. Rev. Appl. 17 034041
[5] Zeng M Y, Huang Y, Zhang B L, Hao Y M, Ma Z X, Hu R M, Zhang H Q, Chen Z, Wang M, Guan H and Gao K L 2023 Phys. Rev. Appl. 19 064004
[6] Zhang Z Q, Arnold K J, Kaewuam R and Barrett M D 2023 Sci. Adv. 9 1971
[7] McGrew W F, Zhang X, Fasano R J, Schäffer S A, Beloy K, Nicolodi D, Brown R C, Hinkley N, Milani G, Schioppo M, Yoon T H and Ludlow A D 2018 Nature 564 87
[8] Bothwell T, Kedar D, Oelker E, Robinson J M, Bromley S L, Tew W L, Ye J and Kennedy C J 2019 Metrologia 56 065004
[9] Ohmae N, Takamoto M, Takahashi Y, Kokubun M, Araki K, Hinton A, Ushijima I, Muramatsu T, Furumiya T, Sakai Y, et al. 2021 Adv. Quan. Technol. 4 2100015
[10] Lu B K, Sun Z, Yang T, Lin Y G, Wang Q, Li Y, Meng F, Lin B K, Li T C and Fang Z J 2022 Chin. Phys. Lett. 39 080601
[11] Riehle F, Gill P, Arias F and Robertsson L 2018 Metrologia 55 188
[12] Safronova M S, Budker D, DeMille D, Kimball D F J, Derevianko A and Clark C W 2018 Rev. Mod. Phys. 90 025008
[13] Lange R, Huntemann N, Rahm J M, Sanner C, Shao H, Lipphardt B, Tamm C, Weyers S and Peik E 2021 Phys. Rev. Lett. 126 011102
[14] Bothwell T, Kennedy C J, Aeppli A, Kedar D, Robinson J M, Oelker E, Staron A and Ye J 2022 Nature 602 420
[15] Beloy K, Bodine M I, Bothwell T, Brewer S M, Bromley S L, Chen J, Deschenes J, Diddams S A, Fasano R J, Fortier T M, et al. 2021 Nature 591 564
[16] Shen Q, Guan J, Ren J, Zeng L, Hou L, Li M, Cao Y, Han J, Lian M, Chen Y, et al. 2022 Nature 610 661
[17] Grotti J, Koller S, Vogt S, Häfner S, Sterr U, Lisdat C, Denker H, Voigt C, Timmen L, Rolland A, et al. 2018 Nat. Phys. 14 437
[18] Huang Y, Zhang H Q, Zhang B L, Hao Y M, Guan H, Zeng M Y, Chen Q F, Lin Y G, Wang Y Z, Cao S Y, Liang K, Fang F, Fang Z J, Li T C and Gao K L 2020 Phys. Rev. A 102 050802
[19] Zhang B L, Huang Y, Zhang H Q, Hao Y M, Zeng M Y, Guan H and Gao K L 2020 Chin. Phys. B 29 074209
[20] Zhang B L, Huang Y, Hao Y M, Zhang H Q, Zeng M Y, Guan H and Gao K L 2020 J. Appl. Phys. 128 143105
[21] Dubé P, Madej A A, Zhou Z and Bernard J E 2013 Phys. Rev. A 87 023806
[22] Takamoto M, Tanaka Y and Katori H 2022 Appl. Phys. Lett. 120 140502
[23] Schkolnik V, Budker D, Fartmann O, Flambaum V, Hollberg L, Kalaydzhyan T, Kolkowitz S, Krutzik M, Ludlow A, Newbury N et al. 2023 Quan. Sci. Technol. 8 014003
[24] Li L, Ji J W, Ren W, Zhao X, Peng X K, Xiang J F, Lü D S and Liu L 2016 Chin. Phys. B 25 073201
[25] Farolfi A, Trypogeorgos D, Colzi G, Fava E, Lamporesi G and Ferrari G 2019 Rev. Sci. Instrum. 90 115114
[26] Sumnert T J, Pendlebury J M and Smith K F 1987 J. Phys. D Appl. Phys. 20 1095
[27] Jie S F, Li J L, Liu Z C and Mao Y K 2023 Meas. Sci. Technol. 34 095124
[28] Merkel B, Thirumalai K, Tarlton J E, Schäfer V M, Balance C J, Harty T P and Lucas D M 2019 Rev. Sci. Instrum. 90 044702
[29] Xiao K D, Wang L, Guo J, Zhu M H, Zhao X C, Sun X P, Ye C H and Zhou X 2020 Rev. Sci. Instrum. 91 085107
[30] Duan Z X, Wu W T, Lin Y T and Yang S J 2022 Rev. Sci. Instrum. 93 123201
[31] Tommaseo G, Pfeil T, Revalde G, Werth G, Indelicato P and Desclaux J P 2003 Eur. Phys. J. D 25 113
[32] Barwood G P, Huang G, King S A, Klein H A and Gill P 2015 J. Phys. B:At. Mol. Opt. Phys. 48 035401
[1] A step to the decentralized real-time timekeeping network
Fangmin Wang(王芳敏), Yufeng Chen(陈雨锋), Jianhua Zhou(周建华), Yuting Lin(蔺玉亭), Jun Yang(杨军), Bo Wang(王波), and Lijun Wang(王力军). Chin. Phys. B, 2024, 33(1): 010702.
[2] A cryogenic radio-frequency ion trap for a 40Ca+ optical clock
Mengyan Zeng(曾孟彦), Yao Huang(黄垚), Baolin Zhang(张宝林), Zixiao Ma(马子晓), Yanmei Hao(郝艳梅), Ruming Hu(胡如明), Huaqing Zhang(张华青), Hua Guan(管桦), and Kelin Gao(高克林). Chin. Phys. B, 2023, 32(11): 113701.
[3] Progress on the 40Ca+ ion optical clock
Baolin Zhang(张宝林), Yao Huang(黄垚), Huaqing Zhang(张华青), Yanmei Hao(郝艳梅), Mengyan Zeng(曾孟彦), Hua Guan(管桦), Kelin Gao(高克林). Chin. Phys. B, 2020, 29(7): 074209.
[4] Ramsey-coherent population trapping Cs atomic clock based on lin||lin optical pumping with dispersion detection
Peng-Fei Cheng(程鹏飞), Jian-Wei Zhang(张建伟), Li-Jun Wang(王力军). Chin. Phys. B, 2019, 28(7): 070601.
[5] Development of the integrated integrating sphere cold atom clock
Ming-Yuan Yu(于明圆), Yan-Ling Meng(孟艳玲), Mei-Feng Ye(叶美凤), Xin Wang(王鑫), Xin-Chuan Ouyang(欧阳鑫川), Jin-Yin Wan(万金银), Ling Xiao(肖玲), Hua-Dong Cheng(成华东), Liang Liu(刘亮). Chin. Phys. B, 2019, 28(7): 070602.
[6] Broad bandwidth interference filter-stabilized external cavity diode laser with narrow linewidth below 100 kHz
Guan-Zhong Pan(潘冠中), Bao-Lu Guan(关宝璐), Chen Xu(徐晨), Peng-Tao Li(李鹏涛), Jia-Wei Yang(杨嘉炜), Zhen-Yang Liu(刘振杨). Chin. Phys. B, 2018, 27(1): 014204.
[7] Automatic compensation of magnetic field for a rubidium space cold atom clock
Lin Li(李琳), Jingwei Ji(吉经纬), Wei Ren(任伟), Xin Zhao(赵鑫), Xiangkai Peng(彭向凯), Jingfeng Xiang(项静峰), Desheng Lü(吕德胜), Liang Liu(刘亮). Chin. Phys. B, 2016, 25(7): 073201.
[8] Recent improvements on the atomic fountain clock at SIOM
Du Yuan-Bo (杜远博), Wei Rong (魏荣), Dong Ri-Chang (董日昌), Zou Fan (邹凡), Wang Yu-Zhu (王育竹). Chin. Phys. B, 2015, 24(7): 070601.
[9] Ramsey-CPT spectrum with the Faraday effect and its application to atomic clocks
Tian Yuan (田原), Tan Bo-Zhong (谭伯仲), Yang Jing (杨晶), Zhang Yi (张奕), Gu Si-Hong (顾思洪). Chin. Phys. B, 2015, 24(6): 063302.
[10] Stable 85Rb micro vapour cells: fabrication based on anodic bonding and application in chip-scale atomic clocks
Su Juan(苏娟), Deng Ke(邓科), Guo Deng-Zhu(郭等柱), Wang Zhong(汪中), Chen Jing(陈兢), Zhang Geng-Min(张耿民), and Chen Xu-Zong(陈徐宗). Chin. Phys. B, 2010, 19(11): 110701.
No Suggested Reading articles found!