INTERDISCIPLINARY PHYSICS AND RELATED AREAS OF SCIENCE AND TECHNOLOGY |
Prev
Next
|
|
|
Effects of oxygen/nitrogen co-incorporation on regulation of growth and properties of boron-doped diamond films |
Dong-Yang Liu(刘东阳)1,2, Kun Tang(汤琨)1,3,†, Shun-Ming Zhu(朱顺明)1,3, Rong Zhang(张荣)1,3, You-Dou Zheng(郑有炓)1,3, and Shu-Lin Gu(顾书林)1,3,‡ |
1 School of Electronic Science and Engineering, Nanjing University, Nanjing 210093, China; 2 The Shanghai Huahong Grace Semiconductor Manufacturing Corporation, Shanghai 201203, China; 3 Collaborative Innovation Center of Solid-State Lighting and Energy-Saving Electronics, Nanjing University, Nanjing 210093, China |
|
|
Abstract Regulation with nitrogen and oxygen co-doping on growth and properties of boron doped diamond films is studied by using laughing gas as dopant. As the concentration of laughing gas (N2O/C) increases from 0 to 10%, the growth rate of diamond film decreases gradually, and the nitrogen-vacancy (NV) center luminescence intensity increases first and then weakens. The results show that oxygen in laughing gas has a strong inhibitory effect on formation of NV centers, and the inhibitory effect would be stronger as the concentration of laughing gas increases. As a result, the film growth rate and nitrogen-related compensation donor decrease, beneficial to increase the acceptor concentration (~3.2× 1019 cm-3) in the film. Moreover, it is found that the optimal regulation with the quality and electrical properties of boron doped diamond films could be realized by adding appropriate laughing gas, especially the hole mobility (~700 cm2/V·s), which is beneficial to the realization of high-quality boron doped diamond films and high-level optoelectronic device applications in the future.
|
Received: 06 May 2023
Revised: 05 July 2023
Accepted manuscript online: 06 July 2023
|
PACS:
|
81.05.ug
|
(Diamond)
|
|
81.15.-z
|
(Methods of deposition of films and coatings; film growth and epitaxy)
|
|
61.72.-y
|
(Defects and impurities in crystals; microstructure)
|
|
Fund: Project supported by the National Key R&D Program of China (Grant Nos. 2018YFB0406502, 2017YFF0210800, and 2017YFB0403003), the National Natural Science Foundation of China (Grant Nos. 61974059, 61674077, and 61774081), the Natural Science Foundation of Jiangsu Province (Grant No. BK20160065), and the Fundamental Research Funds for the Central Universities. |
Corresponding Authors:
Kun Tang, Shu-Lin Gu
E-mail: ktang@nju.edu.cn;slgu@nju.edu.cn
|
Cite this article:
Dong-Yang Liu(刘东阳), Kun Tang(汤琨), Shun-Ming Zhu(朱顺明), Rong Zhang(张荣), You-Dou Zheng(郑有炓), and Shu-Lin Gu(顾书林) Effects of oxygen/nitrogen co-incorporation on regulation of growth and properties of boron-doped diamond films 2023 Chin. Phys. B 32 118102
|
[1] Koizumi S, Watanabe K, Hasegawa M and Kanda H 2001 Science 292 1899 [2] Isberg J et al. 2002 Science 297 1670 [3] Nebel C E 2013 Nat. Mater. 12 690 [4] Umezawa H, Nagase M, Kato Y and Shikata S I 2012 Diamond Relat. Mater. 24 201 [5] Pickett W E 1994 Phys. Rev. Lett. 73 1664 [6] May P W 2008 Science 319 1490 [7] Pernot J, Volpe P N, Omnes F, Muret P, Mortet V, Haenen K and Teraji T 2010 Phys. Rev. B 81 205203 [8] Teraji T, Wada H, Yamamoto M, Arima K and Ito T 2006 Diamond Relat. Mater. 15 602 [9] Mortet V, Daenen M, Teraji T, Lazea A, Vorlicek V, D'Haen J, Haenen K and D'Olieslaeger M 2006 Diamond Relat. Mater. 17 1330 [10] Cobb S J, Ayres Z J and Macpherson J V 2018 Ann. Rev. Anal. Chem. 11 463 [11] Bormashov V, Troschiev S, Volkov A, Tarelkin S, Korostylev E, Golovanov A, Kuznetsov M, Teteruk D, Kornilov N, Terentiev S, Buga S and Blank V 2015 Phys. Status Solidi A 212 2539 [12] Zhang J, Ma H, Jiang Y, Liang Z, Tian Y and Jia X 2007 Diamond Relat. Mater. 16 283 [13] Fujimori N, Nakahata H and Imai T 1990 Jpn. J. Appl. Phys. 29 824 [14] Prins J F 1988 Phys. Rev. B 38 5576 [15] Pearson G L and Bardeen J 1949 Phys. Rev. 75 865 [16] Ekimov E, Sidorov V, Bauer E, Mel'Nik N, Curro N, Thompson J and Stishov S 2004 Nature 428 542 [17] Mort J, Machonkin M A and Okumura K 1991 Appl. Phys. Lett. 59 3148 [18] Zhang Y, Zang C, Ma H, Liang Z, Zhou L, Li S and Jia X 2008 Diamond Relat. Mater. 17 209 [19] Charles S J, Butler J E, Feygelson B N, Newton M E, Carroll D L, Steeds J W, Darwish H, Yan C, Mao H K and Hemley R J 2004 Phys. Status Solidi A 2485 2473 [20] Bradac C, Gaebel T and Rabeau J R 2013 Nitrogen-Vacancy Color Centers in Diamond:Properties, Synthesis, and Applications (New York:Wiley) Chap. 5 p. 143 [21] Koeck F A, Nemanich R J, Lazea A and Haenen K 2009 Diamond Relat. Mater. 18 789 [22] Gheeraert E, Koizumi S, Teraji T and Kanda H 2000 Solid State Commun. 113 577 [23] May P W, Davey M, Rosser K N and Heard P J 2007 MRS Online Proceedings Library 1039 1501 [24] Prins J F 2000 Phys. Rev. B 61 7191 [25] Katagiri M, Isoya J, Koizumi S and Kanda H 2004 Appl. Phys. Lett. 85 6365 [26] Frenklach M and Wang H 1991 Phys. Rev. B 43 1520 [27] Katayama-Yoshida H, Nishimatsu T, Yamamoto T and Orita N 1998 Phys. Status Solidi B 210 429 [28] Yu B D, Miyamoto Y and Sugino O 2000 Appl. Phys. Lett. 76 976 [29] Miyazaki T, Okushi H and Uda T 2002 Phys. Rev. Lett. 88 066402 [30] Segev D and Wei S H 2003 Physi. Re. Lett. 91 126406 [31] Teng Y, Liu D Y, Tang K, Zhao W K, Chen Z A, Huang Y M, Duan J J, Bian Y, Ye J D, Zhu S M, Zhang R, Zheng Y D and Gu S L 2022 Chin. Phys. B 31 128106 [32] Halliwell S C 2017 PhD Dissertation (United Kingdom:University of Bristol) [33] Moussa J E, Marom N, Sai N and Chelikowsky J R 2012 Phys. Rev. Lett 108 226404 [34] Croot A, Othman M Z, Conejeros S, Fox N A and Allan N L 2018 J. Phys.:Conden. Matter. 30 425501 [35] Liu D Y, Hao L C, Teng Y, Qin F, Shen Y, Tang K, Ye J D, Zhu S M, Zhang R, Zheng Y D and Gu S L 2021 APL Mater. 9 081106 [36] Bogdanov S A, Vikharev A L, Drozdov M N and Radishev D B 2017 Diamond Relat. Mater. 74 59 [37] Widmann C J, Hetzl M, Drieschner S and Nebe C E 2016 Diamond Relat. Mater. 72 41 [38] Liu X B, Chen X, Singh D J, Stern R A, Wu J, Petitgirard S, Bina C R and Jacobsen S D 2019 Proce. Natl. Acad. Sci. USA 116 7703 [39] Jin S and Moustakas T D 1994 Appl. Phys. Lett. 65 403 [40] Müller-Sebert W, Wörner E, Fuchs F, Wild C and Koidl P 1996 Appl. Phys. Lett. 68 759 [41] Liu D Y, Hao L C, Chen Z A, Zhao W K, Shen Y, Bian Y, Tang K, Ye J D, Zhu S M, Zhang R, Zheng Y D and Gu S L 2020 Appl. Phys. Lett. 117 022101 [42] Liu D Y, Hao L C, Zhao W K, Chen Z A, Tang K, Zhu S M, Ye J D, Zhang R, Zheng Y D and Gu S L 2022 Chin. Phys. B 31 128104 [43] Grotjohn T A, Nicley S, Tran D, Reinhard D K, Becker M and Asmussen J 2009 MRS Online Proceedings Library 1203 1717 [44] Faggio G, Messina G, Santangelo S, Prestopino G, Ciancaglioni I and Marinelli M 2012 J. Quantit. Spectrosc. Radiat. Transfer 113 2476 |
No Suggested Reading articles found! |
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
Altmetric
|
blogs
Facebook pages
Wikipedia page
Google+ users
|
Online attention
Altmetric calculates a score based on the online attention an article receives. Each coloured thread in the circle represents a different type of online attention. The number in the centre is the Altmetric score. Social media and mainstream news media are the main sources that calculate the score. Reference managers such as Mendeley are also tracked but do not contribute to the score. Older articles often score higher because they have had more time to get noticed. To account for this, Altmetric has included the context data for other articles of a similar age.
View more on Altmetrics
|
|
|