Please wait a minute...
Chin. Phys. B, 2023, Vol. 32(11): 114206    DOI: 10.1088/1674-1056/acd526
ELECTROMAGNETISM, OPTICS, ACOUSTICS, HEAT TRANSFER, CLASSICAL MECHANICS, AND FLUID DYNAMICS Prev   Next  

Large spatial shifts of reflected light beam off biaxial hyperbolic materials

Jia-Guo Shen(沈加国)1, Syed-ul-hasnain Bakhtiar(哈思内恩)2, Hao-Yuan Song(宋浩元)1, Sheng Zhou(周胜)1, Shu-Fang Fu(付淑芳)1,2,†, Xuan-Zhang Wang(王选章)1, Xuan Wang(王暄)3, and Qiang Zhang(张强)1,‡
1 Key Laboratory for Photonic and Electronic Bandgap Materials, Chinese Ministry of Education, and School of Physics and Electronic Engineering, Harbin Normal University, Harbin 150025, China;
2 School of Integrated Circuits, Engineering Research Center for Functional Ceramics, Wuhan National Laboratory for Optoelectronics, Huazhong University of Science and Technology, Wuhan 430030, China;
3 Key Laboratory of Engineering Dielectrics and Its Application, Ministry of Education, Harbin University of Science and Technology, Harbin 150080, China
Abstract  Many optical systems that deal with polarization rely on the adaptability of controlling light reflection in the lithography-free nanostructure. In this study, we explore the Goos-Hänchen (GH) shift and Imbert-Fedorov (IF) shift in a biaxial hyperbolic film on a uniaxial hyperbolic substrate. This research statistically calculates and analyzes the GH shift and IF shift for the natural biaxial hyperbolic material (NBHM). We select the surface with the strongest anisotropy within the NBHM and obtain the complex beam-shift spectrum. By incorporating the NBHM film, the GH shift caused by a transversely magnetic incident-beam on the surface increases significantly compared with that on the uniaxial hyperbolic material. The maximum of GH shift can reach 86λ0 at about 841 cm-1 when the thickness of NBHM is 90 nm, and the IF shift can approach 2.7λ0 for a circularly-polarized beam incident on a 1700-nm-thick NBHM. It is found that the spatial-shift increases when a highly anisotropic hyperbolic polariton is excited in hyperbolic material, where the shift spectrum exhibits an oscillating behaviour accompanied with sharp shift peak (steep slope). This large spatial shift may provide an alternative strategy to develop novel sub-micrometric optical devices and biosensors.
Keywords:  Goos-Hänchen shift      Imbert-Fedorov shift      α-MoO3  
Received:  13 March 2023      Revised:  11 May 2023      Accepted manuscript online:  12 May 2023
PACS:  42.65.-k (Nonlinear optics)  
  81.05.Xj (Metamaterials for chiral, bianisotropic and other complex media)  
  77.22.Ch (Permittivity (dielectric function))  
Fund: Project supported by the Natural Science Foundation of Heilongjiang Province, China (Grant No. LH2020A014), the Fund from the Education Commission of Heilongjiang Province, China (Grant No. 2020-KYYWF352), the Fund from the Key Laboratory of Engineering Dielectrics and Its Application (Harbin University of Science and Technology), Ministry of Education, China (Grant Nos. KFM202005 and KF20171110), and the Harbin Normal University Postgraduate Innovative Research Project, Heilongjiang Province, China (Grant Nos. HSDSSCX2022-53 and HSDSSCX2022-49).
Corresponding Authors:  Shu-Fang Fu, Qiang Zhang     E-mail:  shufangfu75@163.com;hsdzq80@126.com

Cite this article: 

Jia-Guo Shen(沈加国), Syed-ul-hasnain Bakhtiar(哈思内恩), Hao-Yuan Song(宋浩元), Sheng Zhou(周胜), Shu-Fang Fu(付淑芳), Xuan-Zhang Wang(王选章), Xuan Wang(王暄), and Qiang Zhang(张强) Large spatial shifts of reflected light beam off biaxial hyperbolic materials 2023 Chin. Phys. B 32 114206

[1] Bliokh K Y and Aiello A 2013 J. Opt. 15 014001
[2] Li C F 2007 Phys. Rev. A 76 013811
[3] Goos F and Hänchen H 1947 Ann. Phys. 436 333
[4] Goos F and Hänchen H 1949 Ann. Phys. 5 251
[5] Imbert C 1972 Phys. Rev. D 5 787
[6] Fedorov F I 2013 J. Opt. 15 014002
[7] Takayama O, Sukham J, Malureanu R, Lavrinenko A V and Puentes G 2018 P Opt. Lett. 43 004602
[8] Soboleva I V, Moskalenko V V and Fedyanin A A 2012 Phys. Rev. Lett. 108 123901
[9] Zhang Q, Zhou S, Fu S F and Wang X Z 2019 J. Opt. Soc. Am. B 36 1429
[10] Petrov N I, Danilov V A, Popov V V and Usievich B A 2020 Opt. Express 28 7552
[11] Song H Y, Fu S F, Zhang Q, Zhou S and Wang X Z 2021 Opt. Express 29 19068
[12] Peng H Y and Wang X Z 2021 J. Opt. Soc. Am. B 38 2027
[13] Liu S Q, Song Y F, Wan T, Ke Y G and Luo Z M 2022 Chin. Phys. B 31 074101
[14] Fu S F, Wang X G, Zhang Y Q, Zhou S and Wang X Z 2021 Opt. Express 29 39125
[15] Wu F, Luo M, Wu J, Fan C, Qi X, Jian Y, Liu D, Xiao S Y, Chen G Y, Jiang H T, Sun Y and Chen H 2021 Phys. Rev. A 104 023518
[16] Wu F, Wu J J, Guo Z W, Jiang H T, Sun Y, Li Y H, Ren J and Chen H 2019 Phys. Rev. Appl. 12 014028
[17] Hosten O and Kwiat P 2008 Science 319 787
[18] Poddubny A, Iorsh I, Belov P and Kivshar Y 2013 Nat. Photon. 7 948
[19] Drachev V P, Podolskiy V A and Kildishev A V 2013 Opt. Express 21 15048
[20] Shekhar P, Atkinson J and Jacob Z 2014 Nano Converg. 1 14
[21] Yao J, Liu Z, Liu Y, Wang Y, Sun C, Bartal G, Stacy A M and Zhang X 2008 Science 321 930
[22] Lee H, Liu Z, Xiong Y, Sun C and Zhang X 2007 Opt. Express 15 15886
[23] Guo Y, Cortes C L, Molesky S and Jacob Z 2012 Appl. Phys. Lett. 101 131106
[24] Pujol-Closa P, Gomis-Bresco J, Mukherjee S, Gómez-Díaz J S, Torner L and Artigas D 2021 Opt. Lett. 46 58
[25] Xu G, Pan T, Zang T and Sun J 2008 Opt. Commun. 281 2819
[26] Korzeb K, Gajc M and Pawlak D A 2015 Opt. Express 23 25406
[27] Gjerding M N, Petersen R, Pedersen T G, Mortensen N A and Thygesen K S 2017 Nat. Commun. 8 320
[28] Wu X H 2018 Plasmonics 13 1695
[29] Li Y B, Song H Y, Zhang Y Q, Wang X G, Fu S F and Wang X Z 2022 Chin. Phys. B 31 064207
[30] Deng G, Dereshgi S A, Song X, Wei C and Aydin K 2020 Phys. Rev. B 102 035408
[31] Sui C, Liu Y, Wang X G, Zhou S, Fu S F, Wang X, Zhang Q, Liang H and Wang X Z 2022 J. Opt. Soc. Am. B 39 900
[32] Ma W, Alonso-González P, Li S, Nikitin A Y, Yuan J, Martín-Sánchez J, Taboada-Gutiérrez J, Amenabar I, Li P, Vélez S, Tollan C, Dai Z, Zhang Y, Sriram S, Kalantar-Zadeh K, Lee S T, Hillenbrand R and Bao Q 2018 Nature 562 557
[33] Kim J H, Dash J K, Kwon J, Hyun C, Kim H, Ji E and Lee G H 2019 2$D. Mater. 6 015016
[34] Wei C, Abedini Dereshgi S, Song X, Murthy A, Dravid V P, Cao T and Aydin K 2020 Adv. Opt. Mater. 8 2000088
[35] Wu B Y, Shi Z X, Wu F, Wang M J and Wu X H 2022 Chin. Phys. B 31 044101
[36] Hu G, Ou Q, Si G, Wu Y, Wu J, Dai Z, Krasnok A, Mazor Y, Zhang Q, Bao Q, Qiu C W and Alú A 2020 Nature 582 209
[37] Abedini Dereshgi S, Folland T G, Murthy A A, Song X, Tanriover I, Dravid V P, Caldwell J D and Aydin K 2020 Nat. Commun. 11 5771
[38] Kildishev A V, Boltasseva A and Shalaev V M 2013 Science 339 1232009
[39] Song H Y, Chen Z X, Li Y B, Hao S P, Zhang Q, Zhou S, Fu S F and Wang X Z 2023 J. Opt. Soc. Am. B 40 488686
[1] Giant and controllable Goos-Hänchen shift of a reflective beam off a hyperbolic metasurface of polar crystals
Tian Xue(薛天), Yu-Bo Li(李宇博), Hao-Yuan Song(宋浩元), Xiang-Guang Wang(王相光), Qiang Zhang(张强), Shu-Fang Fu(付淑芳), Sheng Zhou(周胜), and Xuan-Zhang Wang(王选章). Chin. Phys. B, 2024, 33(1): 014207.
[2] Enhanced and tunable Imbert-Fedorov shift based on epsilon-near-zero response of Weyl semimetal
Ji-Peng Wu(伍计鹏), Yuan-Jiang Xiang(项元江), and Xiao-Yu Dai(戴小玉). Chin. Phys. B, 2023, 32(3): 037503.
[3] Method of measuring one-dimensional photonic crystal period-structure-film thickness based on Bloch surface wave enhanced Goos-Hänchen shift
Yao-Pu Lang(郎垚璞), Qing-Gang Liu(刘庆纲), Qi Wang(王奇), Xing-Lin Zhou(周兴林), and Guang-Yi Jia(贾光一). Chin. Phys. B, 2023, 32(1): 017802.
[4] Goos-Hänchen and Imbert-Fedorov shifts in tilted Weyl semimetals
Shuo-Qing Liu(刘硕卿), Yi-Fei Song(宋益飞), Ting Wan(万婷), You-Gang Ke(柯友刚), and Zhao-Ming Luo(罗朝明). Chin. Phys. B, 2022, 31(7): 074101.
[5] Tunable enhanced spatial shifts of reflective beam on the surface of a twisted bilayer of hBN
Yu-Bo Li(李宇博), Hao-Yuan Song(宋浩元), Yu-Qi Zhang(张玉琦), Xiang-Guang Wang(王相光),Shu-Fang Fu(付淑芳), and Xuan-Zhang Wang(王选章). Chin. Phys. B, 2022, 31(6): 064207.
[6] Strong chirality in twisted bilayer α-MoO3
Bi-Yuan Wu(吴必园), Zhang-Xing Shi(石章兴), Feng Wu(吴丰), Ming-Jun Wang(王明军), and Xiao-Hu Wu(吴小虎). Chin. Phys. B, 2022, 31(4): 044101.
No Suggested Reading articles found!