Please wait a minute...
Chin. Phys. B, 2023, Vol. 32(11): 114213    DOI: 10.1088/1674-1056/ad0621
Special Issue: SPECIAL TOPIC — Celebrating the 100th Anniversary of Physics Discipline of Northwest University
SPECIAL TOPIC—Celebrating the 100th Anniversary of Physics Discipline of Northwest University Prev   Next  

Topological states switching and group velocity control in two-dimensional non-reciprocal Hermitian photonic lattice

Yu Lin(林宇), Yuandan Wang(王元旦), Junhao Yang(杨俊豪), Yixuan Fu(符艺萱), and Xinyuan Qi(齐新元)
School of Physics, Northwest University, Xi'an 710127, China
Abstract  We proposed a model with non reciprocal coupling coefficients, in which the imaginary parts γ indicate the phase delay or exceed term. The distributions of band structure and the group velocity are both characterized as a function of the coupling. we studied the system's topological states and group velocity control. The results show that the movement and breaking of Dirac points exist in the energy band of the system. By changing the coupling coefficients, the conversion between any topological states corresponds to different Chern number. Topological edge states exist in topological non-trivial systems that correspond to the two different Chern numbers. Besides, it is also found that both the coupling coefficient and the wave vector can cause the oscillation of the pulse group velocity. At the same time, the topological state can suppress the amplitude of the group velocity profiles. Our findings enrich the theory of light wave manipulation in high-dimensional photonic lattices and provide a novel view for realizing linear localization and group velocity regulation of light waves, which has potential application in high-speed optical communication and quantum information fields.
Keywords:  Dirac point      imaginary coupling      Chern number      group velocity  
Received:  30 June 2023      Revised:  23 October 2023      Accepted manuscript online:  24 October 2023
PACS:  42.70.Qs (Photonic bandgap materials)  
  03.65.Vf (Phases: geometric; dynamic or topological)  
  42.79.Gn (Optical waveguides and couplers)  
Fund: Project supported by the National Natural Science Foundation of China (Grant No. 12174307).
Corresponding Authors:  Xinyuan Qi     E-mail:  qixycn@nwu.edu.cn

Cite this article: 

Yu Lin(林宇), Yuandan Wang(王元旦), Junhao Yang(杨俊豪), Yixuan Fu(符艺萱), and Xinyuan Qi(齐新元) Topological states switching and group velocity control in two-dimensional non-reciprocal Hermitian photonic lattice 2023 Chin. Phys. B 32 114213

[1] Xiao D, Jiang J, Shin J H, Wang W B, Wang F, Zhao Y F, Liu C, Wu W, Chan M H W, Samarth N and Chang C Z 2018 Phys. Rev. Lett. 120 056801
[2] Su W P, Schrieffer J R and Heeger A J 1979 Phys. Rev. Lett. 42 1698
[3] Hao X, Wu W, Zhu J, Song B, Meng Q, Wu M,Hua C, Yang S A and Zhou M 2022 J. Phys. Condens. Matter 34 255504
[4] Heide C, Kobayashi Y and Baykusheva D R, Jain D, Sobota J A, Hashimoto M, Kirchmann P S, Oh S, Heinz T F, Reis D A and Ghimire S 2022 Nat. Photonics 16 620624
[5] Khanikaev A B and Shvets G 2017 Nat. Photonics 11 763773
[6] Zhen B and Redondo A B 2022 Nat. Commun. 13 2249
[7] Price H, Chong Y, Khanikaev A, Schomerus H, Maczewsky L J, Kremer M, Heinrich M, Szameit A, Zilberberg O and Yang Y 2022 J. Phys. Photonics 4 032501
[8] Kawabata K, Higashikawa S, Gong Z, Ashida Y and Ueda M 2019 Nat. Commun. 10 297
[9] Han S H, Jeong S G, Kim S W, Kim T H and Cheon S 2020 Phys. Rev. B 102 235411
[10] Zhong J, Wang K, Park Y, Asadchy V, Wojcik C C, Dutt A and Fan S 2021 Phys. Rev. B 104 125416
[11] Kim M, Jacob Z and Rho J 2020 Light Sci. Appl. 9 130
[12] Dong J W, Chen X D, Zhu H, Wang Y and Zhang X 2017 Nat. Mater. 16 298302
[13] Bernevig B A and Zhang S C 2006 Phys. Rev. Lett. 96 106802
[14] Parappurath N, Alpeggiani F, Kuipers L and Verhagen E 2020 Sci. Adv. 6 10
[15] Yin J, Tan C, Barcons-Ruiz D, et al. 2022 Science 375 1398
[16] Cheng H, Sha Y, Liu R, Fang C and Lu L 2020 Phys. Rev. Lett. 124 104301
[17] Cai X, Ye L, Qiu C, Xiao M, Yu R, Ke M and Liu Z 2020 Light Sci. Appl. 9 38
[18] Kominis Y, Bountis T and Flach S 2016 Sci. Rep. 6 33699
[19] Zhang W, Di F, Zheng X, Sun H and Zhang X 2017 Nat. Commun. 14 1083
[20] Drozdov I K, Alexandradinata A, Jeon S, Nadj-Perge, S, Ji H, Cava R J, Bernevig A B and Yazdani A 2014 Nat. Phys. 10 664669
[21] Zhou P, Liu G G, Ren X, Yang Y, Xue H, Bi L, Deng L, Chong Y and Zhang B 2020 Light Sci. Appl. 9 133
[22] Xie B Y, Su G X, Wang H F, Su H, Shen X P, Zhan P, Lu M H, Wang Z L and Chen Y F 2019 Phys. Rev. Lett. 122 233903
[23] Chen Y F, Lan Z H and Zhu J 2022 Phys. Rev. Appl 17 054003
[24] Chen Y F, Meng F, Lan Z H, Jia B H and Huang X D 2021 Phys. Rev. Appl 15 034053
[25] Chen Y F, Lan Z H and Zhu J 2022 Nanophotonics 11 1345
[26] Chen Y F, Meng F, Jia B H, Li G Y and Huang X D 2019 Phys. Status Solidi RRL 13 1900175
[27] Feng L, El-Ganainy R and Ge L 2017 Nat Photonics 11 752
[28] Jiang J R, Chen W T and Chern R L 2020 Sci. Rep. 10 15726
[29] Hao X, Wu W, Zhu J, Song B, Meng Q,Wu M,Hua C, Yang S A and Zhou M 2022 J. Phys. Condens. Matter 34 255504
[30] Heide C, Kobayashi Y, Baykusheva D R, et al. 2022 Nat. Photonics 16 620624
[31] Wang Z, Chong Y, Joannopoulos J D and Soljačić M 2009 Nature 461 772
[32] Du L, Hasan T, Castellanos-Gomez A, Liu G B, Yao Y, Lau C N and Sun Z 2021 Nat. Rev. Phys. 3 193206
[33] Bao L, Qi B, Dong D and Nori F 2021 Phys. Rev. A 103 042418
[34] Wang X, Li Y, Hu X, Gu R, Ao Y, Jiang P and Gong Q 2022 Phys. Rev. A 105 023531
[35] Parappurath N, Alpeggiani F, Kuipers L and Verhagen E 2020 Sci. Adv. 6 10
[36] Chen J, Liang W and Li Z Y 2019 Phys. Rev. B 99 014103
[37] Mukherjee S and Rechtsman M C 2021 Phys. Rev. X 11 041057
[38] Sounas D L and Alú A 2017 Nat. Photonics 11 774
[39] Jotzu G, Messer M, Desbuquois R, Lebrat M, Uehlinger T, Greif D and Esslinge T 2014 Nature 515 237
[40] Wang B K, Zhou X, Lin H and Bansil A 2021 Phys. Rev. B 104 L121108
[41] Lu Q, Cook J, Zhang X, Chen K Y, Snyder M, Nguyen D T, Reddy P V S, Qin B, Zhan S, Zhao L D, Kowalczyk P J, Brown S A, Chiang T C, Yang S A, Chang T R and Bian G 2022 Nat. Commun. 13 4603
[42] Fan H, Xia B, Tong L, Zheng S and Yu D 2019 Phys. Rev. Lett. 122 204301
[43] Su Z, Kang Y, Zhang B, Zhang Z and Jiang H 2019 Chin. Phys. B 28 117301
[44] Bhattacharya A and Pal B 2019 Phys. Rev. B 100 235145
[45] Zhang C X and Xu X S 2012 Chin. Phys. B 21 044213
[46] Padavić K, Suraj S. Hegde, DeGottardi W and Vishveshwara S 2018 Phys. Rev. B 98 024205
[47] Hu X X, Wang Z B, Zhang P, Chen G J, Zhang Y L, Li G, Zou X B, Zhang T, Tang H X, Dong C H, Guo G C and Zou C L 2021 Nat. Commun. 12 2389
[48] El-Ganainy R, Eisfeld A, Levy M and Christodoulides D N 2013 Appl. Phys. Lett. 103 161105
[49] Fukui T, Hatsugai Y and Suzuki H 2005 J. Phys. Soc. Jpn. 74 1674
[1] Generation of spectrally uncorrelated biphotons via fiber nonlinear quantum interference
Zhengtong Wei(卫正统), Chuan Qu(瞿川), Tian'an Wu(吴天安), Yuanyuan Li(李媛媛), Bo Li(李博), and Shenghai Zhang(张胜海). Chin. Phys. B, 2023, 32(6): 064202.
[2] Photonic Dirac cone and topological transition in a moving dielectric slab
Xinyang Pan(潘昕阳), Haitao Li(李海涛), Weijie Dong(董为杰), Xiaoxi Zhou(周萧溪), Gang Wang(王钢), and Bo Hou(侯波). Chin. Phys. B, 2023, 32(10): 107802.
[3] Current carrying states in the disordered quantum anomalous Hall effect
Yi-Ming Dai(戴镒明), Si-Si Wang(王思思), Yan Yu(禹言), Ji-Huan Guan(关济寰), Hui-Hui Wang(王慧慧), and Yan-Yang Zhang(张艳阳). Chin. Phys. B, 2022, 31(9): 097302.
[4] High Chern number phase in topological insulator multilayer structures: A Dirac cone model study
Yi-Xiang Wang(王义翔) and Fu-Xiang Li(李福祥). Chin. Phys. B, 2022, 31(9): 090501.
[5] Robust and intrinsic type-III nodal points in a diamond-like lattice
Qing-Ya Cheng(程青亚), Yue-E Xie(谢月娥), Xiao-Hong Yan(颜晓红), and Yuan-Ping Chen(陈元平). Chin. Phys. B, 2022, 31(11): 117101.
[6] Metal-insulator phase transition and topology in a three-component system
Shujie Cheng(成书杰) and Xianlong Gao(高先龙). Chin. Phys. B, 2021, 30(1): 010302.
[7] A simple tight-binding approach to topological superconductivity in monolayer MoS2
H Simchi. Chin. Phys. B, 2020, 29(2): 027401.
[8] Acoustic-electromagnetic slow waves in a periodical defective piezoelectric slab
Xiao-juan Li(李小娟), Huan Ge(葛欢), Li Fan(范理), Shu-yi Zhang(张淑仪), Hui Zhang(张辉), Jin Ding(丁劲). Chin. Phys. B, 2017, 26(7): 074302.
[9] Review on second-harmonic generation of ultrasonic guided waves in solid media (I):Theoretical analyses
Wei-Bin Li(李卫彬), Ming-Xi Deng(邓明晰), Yan-Xun Xiang(项延训). Chin. Phys. B, 2017, 26(11): 114302.
[10] Novel conductance step in carbon nanotube with wing-like zigzag graphene nanoribbons
Hong Liu(刘红). Chin. Phys. B, 2017, 26(11): 116101.
[11] Superluminal light attenuated by strong dispersion of complex refractive index
Abdurahman Ahmed Yonis, Vadim Nickolaevich Mal'nev, Belayneh Mesfin Ali. Chin. Phys. B, 2016, 25(2): 027801.
[12] Coupling-matrix approach to the Chern number calculation in disordered systems
Zhang Yi-Fu (张议夫), Yang Yun-You (杨运友), Ju Yan (鞠艳), Sheng Li (盛利), Shen Rui (沈瑞), Sheng Dong-Ning (盛冬宁), Xing Ding-Yu (邢定钰). Chin. Phys. B, 2013, 22(11): 117312.
[13] Subluminal to superluminal light propagation in a V-type three-level atomic system interacting with squeezed vacuum
Zhang Qin(张琴), Qu Guang-Hui(屈光辉), Tang Yuan-He(唐远河), Jin Kang(金康), and Ji Wei-Li(纪卫莉) . Chin. Phys. B, 2012, 21(2): 023201.
[14] Controlling group velocity in a superconductive quantum circuit
Qiu Tian-Hui (邱田会), Yang Guo-Jian (杨国建). Chin. Phys. B, 2012, 21(10): 104205.
[15] Engineering the light propagating features through the two-dimensional coupled-cavity photonic crystal waveguides
Feng Shuai(冯帅) and Wang Yi-Quan(王义全) . Chin. Phys. B, 2011, 20(5): 054209.
No Suggested Reading articles found!