Please wait a minute...
Chin. Phys. B, 2023, Vol. 32(11): 118706    DOI: 10.1088/1674-1056/acf03a
INTERDISCIPLINARY PHYSICS AND RELATED AREAS OF SCIENCE AND TECHNOLOGY Prev   Next  

Effect of short-term plasticity on working memory

Fan Yang(杨帆) and Feng Liu(刘锋)
Department of Physics and Institute for Brain Sciences, Nanjing University, Nanjing 210093, China
Abstract  The way in which persistent firing activity and synaptic plasticity are orchestrated to underlie working memory in recurrent neural networks is not fully understood. Here, we build a continuous attractor network of pyramidal cells and interneurons to simulate an oculomotor delayed response task. Both short-term facilitation (STF) and short-term depression (STD) manifest at synapses between pyramidal cells. The efficacy of individual synapses depends on the time constants of STF and STD as well as the presynaptic firing rate. Self-sustained firing activity (i.e., a bump attractor) during the delay period encodes the cue position. The bump attractor becomes more robust against random drifts and distractions with enhancing STF or reducing STD. Keeping STF and STD at appropriate levels is crucial for optimizing network performance. Our results suggest that, besides slow recurrent excitation and strong global inhibition, short-term plasticity plays a prominent role in facilitating mnemonic behavior.
Keywords:  bump attractor      synaptic plasticity      robustness      sensitivity  
Received:  20 April 2023      Revised:  30 June 2023      Accepted manuscript online:  15 August 2023
PACS:  87.19.lj (Neuronal network dynamics)  
  87.19.lw (Plasticity)  
  87.18.Sn (Neural networks and synaptic communication)  
Fund: This study was supported by STI 2030-Major Projects 2021ZD0201300.
Corresponding Authors:  Feng Liu     E-mail:  fliu@nju.edu.cn

Cite this article: 

Fan Yang(杨帆) and Feng Liu(刘锋) Effect of short-term plasticity on working memory 2023 Chin. Phys. B 32 118706

[1] Baddeley A 1992 Science 255 556
[2] Miller E K 2000 Nat. Rev. Neurosci. 1 59
[3] Miller E K and Cohen J D 2001 Annu. Rev. Neurosci. 24 167
[4] Cowan N 2014 Educ. Psychol. Rev. 26 197
[5] Funahashi S, Bruce C J and Goldman-Rakic P S 1989 J. Neurophysiol. 61 331
[6] Takeda K and Funahashi S 2002 J. Neurophysiol. 87 567
[7] Compte A, Brunel N, Goldman-Rakic P S and Wang X J 2000 Cereb. Cortex 10 910
[8] Hempel C M, Hartman K H, Wang X J, Turrigiano G G and Nelson S B 2000 J. Neurophysiol. 83 3031
[9] Pereira J and Wang X J 2015 Cereb. Cortex 25 3586
[10] Kilpatrick Z P 2018 Sci. Rep. 8 7879
[11] Barbosa J, Stein H, Martinez R L, Galan-Gadea A, Li S, Dalmau J, Adam K C S, Valls-Solé J, Constantinidis C and Compte A 2020 Nat. Neurosci. 23 1016
[12] Mongillo G, Barak O and Tsodyks M 2008 Science 319 1543
[13] Seeholzer A, Deger M and Gerstner W 2019 PLoS Comput. Biol. 15 e1006928
[14] Lisman J E, Fellous J M and Wang X J 1998 Nat. Neurosci. 1 273
[15] Wang X J 1999 J. Neurosci. 19 9587
[16] Jahr C E and Stevens C F 1990 J. Neurosci. 10 3178
[17] Wang Y, Markram H, Goodman P H, Berger T K, Ma J and Goldman-Rakic P S 2006 Nat. Neurosci. 9 534
[18] Wang T, Sun J, Yang F, Li J, Wang W and Liu F 2021 Phys. Rev. E 104 024416
[19] Itskov V, Hansel D and Tsodyks M 2011 Front. Comput. Neurosci. 5 40
[20] Kozachkov L, Tauber J, Lundqvist M, Brincat S L, Slotine J J and Miller E K 2022 PLoS Comput. Biol. 18 e1010776
[21] Fung C C A, Wong K Y M, Wang H and Wu S 2012 Neural Comput. 24 1147
[22] Mejias J, Hernandez-Gomez B and Torres J J 2012 Europhys. Lett. 97 48008
[23] Hestrin S, Nicoll R A, Perkel D J and Sah P 1990 J. Physiol. 422 203
[24] Zucker R S and Regehr W G 2002 Annu. Rev. Physiol. 64 355
[25] Tsukada H, Nishiyama S, Fukumoto D, Sato K, Kakiuchi T and Domino E F 2005 Neuropsychopharmacology 30 1861
[26] Hansel D and Mato G 2013 J. Neurosci. 33 133
[1] Phase sensitivity with a coherent beam and twin beams via intensity difference detection
Jun Liu(刘俊), Tao Shao(邵涛), Chenlu Li(李晨露), Minyang Zhang(张敏洋), Youyou Hu(胡友友), Dongxu Chen(陈东旭), and Dong Wei(卫栋). Chin. Phys. B, 2024, 33(1): 014203.
[2] Giant and controllable Goos-Hänchen shift of a reflective beam off a hyperbolic metasurface of polar crystals
Tian Xue(薛天), Yu-Bo Li(李宇博), Hao-Yuan Song(宋浩元), Xiang-Guang Wang(王相光), Qiang Zhang(张强), Shu-Fang Fu(付淑芳), Sheng Zhou(周胜), and Xuan-Zhang Wang(王选章). Chin. Phys. B, 2024, 33(1): 014207.
[3] Free running period affected by network structures of suprachiasmatic nucleus neurons exposed to constant light
Jian Zhou(周建), Changgui Gu(顾长贵), Yuxuan Song(宋雨轩), and Yan Xu(许艳). Chin. Phys. B, 2023, 32(9): 098701.
[4] Percolation transitions in edge-coupled interdependent networks with directed dependency links
Yan-Li Gao(高彦丽), Hai-Bo Yu(于海波), Jie Zhou(周杰), Yin-Zuo Zhou(周银座), and Shi-Ming Chen(陈世明). Chin. Phys. B, 2023, 32(9): 098902.
[5] Robustness of community networks against cascading failures with heterogeneous redistribution strategies
Bo Song(宋波), Hui-Ming Wu(吴惠明), Yu-Rong Song(宋玉蓉), Guo-Ping Jiang(蒋国平),Ling-Ling Xia(夏玲玲), and Xu Wang(王旭). Chin. Phys. B, 2023, 32(9): 098905.
[6] A miniaturized spin-exchange relaxation-free atomic magnetometer based on uniform light field
Jiajie Li(李佳洁), Xiujie Fang(房秀杰), Renjie Li(李任杰), Baodong Chen(陈宝栋), Yueyang Zhai(翟跃阳), and Ying Liu(刘颖). Chin. Phys. B, 2023, 32(5): 053201.
[7] Doping-enhanced robustness of anomaly-related magnetoresistance in WTe2±α flakes
Jianchao Meng(孟建超), Xinxiang Chen(陈鑫祥), Tingna Shao(邵婷娜), Mingrui Liu(刘明睿), Weimin Jiang(姜伟民), Zitao Zhang(张子涛), Changmin Xiong(熊昌民), Ruifen Dou(窦瑞芬), and Jiacai Nie(聂家财). Chin. Phys. B, 2023, 32(4): 047502.
[8] Angular insensitive nonreciprocal ultrawide band absorption in plasma-embedded photonic crystals designed with improved particle swarm optimization algorithm
Yi-Han Wang(王奕涵) and Hai-Feng Zhang(章海锋). Chin. Phys. B, 2023, 32(4): 044207.
[9] Acoustic propagation uncertainty in internal wave environments using an ocean-acoustic joint model
Fei Gao(高飞), Fanghua Xu(徐芳华), Zhenglin Li(李整林), Jixing Qin(秦继兴), and Qinya Zhang(章沁雅). Chin. Phys. B, 2023, 32(3): 034302.
[10] Inverse stochastic resonance in modular neural network with synaptic plasticity
Yong-Tao Yu(于永涛) and Xiao-Li Yang(杨晓丽). Chin. Phys. B, 2023, 32(3): 030201.
[11] Research on the model of high robustness computational optical imaging system
Yun Su(苏云), Teli Xi(席特立), and Xiaopeng Shao(邵晓鹏). Chin. Phys. B, 2023, 32(2): 024202.
[12] W-doped In2O3 nanofiber optoelectronic neuromorphic transistors with synergistic synaptic plasticity
Yang Yang(杨洋), Chuanyu Fu(傅传玉), Shuo Ke(柯硕), Hangyuan Cui(崔航源), Xiao Fang(方晓), Changjin Wan(万昌锦), and Qing Wan(万青). Chin. Phys. B, 2023, 32(11): 118101.
[13] Measurement of the relative neutron sensitivity curve of a LaBr3(Ce) scintillator based on the CSNS Back-n white neutron source
Jian Liu(刘建), Dongming Wang(王东明), Yuecheng Fu(甫跃成), Zhongbao Li(李忠宝), Han Yi(易晗), and Longtao Yi(易龙涛). Chin. Phys. B, 2023, 32(10): 100703.
[14] Robustness measurement of scale-free networks based on motif entropy
Yun-Yun Yang(杨云云), Biao Feng(冯彪), Liao Zhang(张辽), Shu-Hong Xue(薛舒红), Xin-Lin Xie(谢新林), and Jian-Rong Wang(王建荣). Chin. Phys. B, 2022, 31(8): 080201.
[15] High-fidelity resonant tunneling passage in three-waveguide system
Rui-Qiong Ma(马瑞琼), Jian Shi(时坚), Lin Liu(刘琳), Meng Liang(梁猛), Zuo-Liang Duan(段作梁), Wei Gao(高伟), and Jun Dong(董军). Chin. Phys. B, 2022, 31(2): 024202.
No Suggested Reading articles found!