Please wait a minute...
Chin. Phys. B, 2023, Vol. 32(11): 114204    DOI: 10.1088/1674-1056/ace764
ELECTROMAGNETISM, OPTICS, ACOUSTICS, HEAT TRANSFER, CLASSICAL MECHANICS, AND FLUID DYNAMICS Prev   Next  

Single exposure passive three-dimensional information reconstruction based on an ordinary imaging system

Shen-Cheng Dou(窦申成)1,2, Fan Liu(刘璠)1,2, Hu Li(李虎)3, Xu-Ri Yao(姚旭日)4,5,†, Xue-Feng Liu(刘雪峰)1,2,‡, and Guang-Jie Zhai(翟光杰)1,2
1 Key Laboratory of Electronics and Information Technology for Space Systems, National Space Science Center, Chinese Academy of Sciences, Beijing 100190, China;
2 University of Chinese Academy of Sciences, Beijing 100049, China;
3 Laboratory of Satellite Mission Operation, National Space Science Center, Chinese Academy of Sciences, Beijing 100190, China;
4 Center for Quantum Technology Research and Key Laboratory of Advanced Optoelectronic Quantum Architecture and Measurements(MOE), School of Physics, Beijing Institute of Technology, Beijing 100081, China;
5 Beijing Academy of Quantum Information Sciences, Beijing 100193, China
Abstract  Existing three-dimensional (3D) imaging technologies have issues such as requiring active illumination, multiple exposures, or coding modulation. We propose a passive single 3D imaging method based on an ordinary imaging system. Using the point spread function of the imaging system to realize the non-coding measurement on the target, the full-focus images and depth information of the 3D target can be extracted from a single two-dimensional (2D) image through the compressed sensing algorithm. Simulation and experiments show that this approach can complete passive 3D imaging based on an ordinary imaging system without any coding operations. This method can achieve millimeter-level vertical resolution under single exposure conditions and has the potential for real-time dynamic 3D imaging. It improves the efficiency of 3D information detection, reduces the complexity of the imaging system, and may be of considerable value to the field of computer vision and other related applications.
Keywords:  passive three-dimensional imaging      single exposure      point spread function      compressed sensing  
Received:  04 May 2023      Revised:  11 July 2023      Accepted manuscript online:  14 July 2023
PACS:  42.30.-d (Imaging and optical processing)  
  42.30.Va (Image forming and processing)  
  42.30.Wb (Image reconstruction; tomography)  
Fund: Project supported by the National Key Research and Development Program of China (Grant No. 2018YFB0504302) and Beijing Institute of Technology Research Fund Program for Young Scholars (Grant No. 202122012).
Corresponding Authors:  Xu-Ri Yao, Xue-Feng Liu     E-mail:  yaoxuri@bit.edu.cn;liuxuefeng@nssc.ac.cn

Cite this article: 

Shen-Cheng Dou(窦申成), Fan Liu(刘璠), Hu Li(李虎), Xu-Ri Yao(姚旭日), Xue-Feng Liu(刘雪峰), and Guang-Jie Zhai(翟光杰) Single exposure passive three-dimensional information reconstruction based on an ordinary imaging system 2023 Chin. Phys. B 32 114204

[1] Barbastathis G, Ozcan A and Situ G 2019 Optica 6 921
[2] Antipa N, Kuo G, Heckel R, Mildenhall B, Bostan E, Ng R and Waller L 2018 Optica 5 1
[3] Howland G A, Lum D J, Ware M R and Howell J C 2013 Opt. Express 21 23822
[4] Xiong W, Hu H P, Xiong N X, Yang L T, Peng W C, Wang X F and Qu Y Z 2014 Inf. Sci. 258 403
[5] Haim H, Elmalem S, Giryes R, Bronstein A M and Marom E 2018 IEEE Trans. Comput. Imaging 4 403
[6] Berlich R, Brauer A and Stallinga S 2016 Opt. Express 24 5946
[7] Lin J Y, Lin X, Ji X Y and Dai Q H 2014 IEEE Signal Process. Lett. 21 1471
[8] Lin J Y, Ji X Y, Xu W L and Dai Q H 2013 IEEE Trans. Image Process. 22 4545
[9] Zhang X X, Qiao L, Zhao T Y and Qiu R S 2018 Chin. Phys. B 27 054205
[10] Horisaki R, Tanida J, Stern A and Javidi B 2012 Opt. Lett. 37 2013
[11] Candés E J, Romberg J and Tao T 2006 IEEE Trans. Inf. Theory 52 489
[12] Donoho D L 2006 IEEE Trans. Inf. Theory 52 1289
[13] Candés E J and Tao T 2006 IEEE Trans. Inf. Theory 52 5406
[14] Candés E J and Wakin M B 2008 IEEE Sign. Process. Mag. 25 21
[15] Baraniuk R G 2007 IEEE Sign. Process. Mag. 24 118
[16] Duarte M F and Baraniuk R G 2013 Appl. Comput. Harmon. Anal. 35 111
[17] Studer V, Bobin J, Chahid M, Mousavi H S, Candes E and Dahan M 2012 Proc. Natl. Acad. Sci. USA 109 E1679
[18] Duarte M F, Davenport M A, Takhar D, Laska J N, Sun T, Kelly K F and Baraniuk R G 2008 IEEE Sign. Process. Mag. 25 83
[19] Liu X F, Yao X R, Wang C, Guo X Y and Zhai G J 2017 Opt. Express 25 3286
[20] Howland G A, Dixon P B and Howell J C 2011 Appl. Opt. 50 5917
[21] Liu S, Yao X R, Liu X F, Xu D Z, Wang X D, Liu B, Wang C, Zhai G J and Zhao Q 2019 Opt. Express 27 22138
[22] Sun Y B, Chen J W, Liu Q S and Liu G C 2020 Pattern Recognition 98 107051
[23] Liu X F, Yu W K, Yao X R, Dai B, Li L Z, Wang C and Zhai G J 2016 Opt. Commun. 365 173
[24] Arce G R, Brady D J, Carin L, Arguello H and Kittle D S 2014 IEEE Sign. Process. Mag. 31 105
[25] Qian L L, Lü Q B, Huang M and Xiang L B 2015 Chin. Phys. B 24 080703
[26] Yu W K, Yao X R, Liu X F, Li L Z and Zhai G J 2015 Appl. Opt. 54 363
[27] Gao L, Liang J Y, Li C Y and Wang L H V 2014 Nature 516 74
[28] Llull P, Liao X J, Yuan X, Yang J B, Kittle D, Carin L, Sapiro G and Brady D J 2013 Opt. Express 21 10526
[29] Reddy D, Veeraraghavan A and Chellappa R 2011 2011 IEEE Conference on Computer Vision and Pattern Recognition, June 20-25, 2011, Colorado Springs, United States of America, p. 329
[30] Sun B, Edgar M P, Bowman R, Vittert L E, Welsh S, Bowman A and Padgett M J 2013 Science 340 844
[31] Yuan X, Liao X J, Llull P, Brady D and Carin L 2016 Appl. Opt. 55 7556
[32] Li J Z, Xue F and Blu T 2017 J. Opt. Soc. Am. A 34 1029
[33] Li C B, Yin W T, Jiang H and Zhang Y 2013 Comput. Optim. Appl. 56 507
[1] Optical image encryption algorithm based on a new four-dimensional memristive hyperchaotic system and compressed sensing
Yang Du(都洋), Guoqiang Long(隆国强), Donghua Jiang(蒋东华), Xiuli Chai(柴秀丽), and Junhe Han(韩俊鹤). Chin. Phys. B, 2023, 32(11): 114203.
[2] Iterative filtered ghost imaging
Shao-Ying Meng(孟少英), Mei-Yi Chen(陈美伊), Jie Ji(季杰), Wei-Wei Shi(史伟伟), Qiang Fu(付强), Qian-Qian Bao(鲍倩倩), Xi-Hao Chen(陈希浩), and Ling-An Wu(吴令安). Chin. Phys. B, 2022, 31(2): 028702.
[3] Identification of denatured and normal biological tissues based on compressed sensing and refined composite multi-scale fuzzy entropy during high intensity focused ultrasound treatment
Shang-Qu Yan(颜上取), Han Zhang(张含), Bei Liu(刘备), Hao Tang(汤昊), and Sheng-You Qian(钱盛友). Chin. Phys. B, 2021, 30(2): 028704.
[4] Computational ghost imaging with deep compressed sensing
Hao Zhang(张浩), Yunjie Xia(夏云杰), and Deyang Duan(段德洋). Chin. Phys. B, 2021, 30(12): 124209.
[5] Compressive imaging based on multi-scale modulation and reconstruction in spatial frequency domain
Fan Liu(刘璠), Xue-Feng Liu(刘雪峰), Ruo-Ming Lan(蓝若明), Xu-Ri Yao(姚旭日), Shen-Cheng Dou(窦申成), Xiao-Qing Wang(王小庆), and Guang-Jie Zhai(翟光杰). Chin. Phys. B, 2021, 30(1): 014208.
[6] An image compressed sensing algorithm based on adaptive nonlinear network
Yuan Guo(郭媛), Wei Chen(陈炜), Shi-Wei Jing(敬世伟). Chin. Phys. B, 2020, 29(5): 054203.
[7] Compressed ghost imaging based on differential speckle patterns
Le Wang(王乐), Shengmei Zhao(赵生妹). Chin. Phys. B, 2020, 29(2): 024204.
[8] Super-resolution filtered ghost imaging with compressed sensing
Shao-Ying Meng(孟少英), Wei-Wei Shi(史伟伟), Jie Ji(季杰), Jun-Jie Tao(陶俊杰), Qian Fu(付强), Xi-Hao Chen(陈希浩), and Ling-An Wu(吴令安). Chin. Phys. B, 2020, 29(12): 128704.
[9] Compressed sensing sparse reconstruction for coherent field imaging
Bei Cao(曹蓓), Xiu-Juan Luo(罗秀娟), Yu Zhang(张羽), Hui Liu(刘 辉), Ming-Lai Chen(陈明徕). Chin. Phys. B, 2016, 25(4): 040701.
[10] PET image reconstruction with a system matrix containing point spread function derived from single photon incidence response
Fan Xin (樊馨), Wang Hai-Peng (王海鹏), Yun Ming-Kai (贠明凯), Sun Xiao-Li (孙校丽), Cao Xue-Xiang (曹学香), Liu Shuang-Quan (刘双全), Chai Pei (柴培), Li Dao-Wu (李道武), Liu Bao-Dong (刘宝东), Wang Lu (王璐), Wei Long (魏龙). Chin. Phys. B, 2015, 24(1): 018702.
[11] Reduced aliasing artifacts using shaking projection k-space sampling trajectory
Zhu Yan-Chun (朱艳春), Du Jiang (杜江), Yang Wen-Chao (杨文超), Duan Chai-Jie (段侪杰), Wang Hao-Yu (王浩宇), Gao Song (高嵩), Bao Shang-Lian (包尚联). Chin. Phys. B, 2014, 23(3): 038702.
No Suggested Reading articles found!