ELECTROMAGNETISM, OPTICS, ACOUSTICS, HEAT TRANSFER, CLASSICAL MECHANICS, AND FLUID DYNAMICS |
Prev
Next
|
|
|
Electromagnetically induced transparency via localized surface plasmon mode-assisted hybrid cavity QED |
Xiaomiao Li(李晓苗), Famin Liu(刘发民), Zigeng Li(李子更), Hongyan Zhu(朱虹燕), Fan Wang(王帆), and Xiaolan Zhong(钟晓岚)† |
School of Physics, Beihang University, Beijing 100191, China |
|
|
Abstract In recent years, most studies have focused on the perfect absorption and high-efficiency quantum memory of the one-sided system, ignoring the characteristics of its optical switching contrast. Thus, the performance of all-optical switching and optical transistors is limited. Herein, we propose a localized surface plasmon (LSP) mode-assisted cavity QED system which consists of a Λ-shaped three-level quantum emitter (QE), a metal nanoparticle and a one-sided optical cavity with a fully reflected mirror. In this system, the QE coherently couples to the cavity and LSP mode respectively, which is manipulated by the control field. As a result, considerably high and stable switch contrast of 90% can be achievable due to the strong confined field of the LSP mode and perfect absorption of the optical medium. In addition, we obtain a power dependent effect between the control field and the transmitted frequency as a result of the converted dark state. We employ the Heisenberg-Langevin equation and numerical master equation formalisms to explain high switching, controllable output light and the dark state. Our system introduces an effective method to improve the performance of optical switches based on the one-sided system in quantum information storage and quantum communication.
|
Received: 07 March 2023
Revised: 16 May 2023
Accepted manuscript online: 23 May 2023
|
PACS:
|
42.50.-p
|
(Quantum optics)
|
|
42.50.Gy
|
(Effects of atomic coherence on propagation, absorption, and Amplification of light; electromagnetically induced transparency and Absorption)
|
|
37.30.+i
|
(Atoms, molecules, andions incavities)
|
|
73.20.Mf
|
(Collective excitations (including excitons, polarons, plasmons and other charge-density excitations))
|
|
Fund: The authors acknowledge support from the National Natural Science Foundation of China (Grant Nos. 62075004 and 11804018) and the Beijing Natural Science Foundation (Grant No. 4212051). |
Corresponding Authors:
Xiaolan Zhong
E-mail: Zhongxl@buaa.edu.cn
|
Cite this article:
Xiaomiao Li(李晓苗), Famin Liu(刘发民), Zigeng Li(李子更), Hongyan Zhu(朱虹燕), Fan Wang(王帆), and Xiaolan Zhong(钟晓岚) Electromagnetically induced transparency via localized surface plasmon mode-assisted hybrid cavity QED 2023 Chin. Phys. B 32 114205
|
[1] Harris S E 1997 Phys. Today 50 36 [2] Zhu J Z and Huang G X 2022 Phys. Rev. A 105 33515 [3] Zhu J Z, Zhang Q and Huang G X 2021 Phys. Rev. A 103 63512 [4] Wei Y C, Wu B H, Hsiao Y F, Tsai P J and Chen Y C 2020 Phys. Rev. A 102 63720 [5] Zhang Q and Huang G 2021 Phys. Rev. A 104 33714 [6] Aspect A, Arimondo E, Kaiser R, Vansteenkiste N and Cohen-Tannoudji C 1988 Phys. Rev. Lett. 61 826 [7] Morigi G, Eschner J and Keitel C H 2000 Phys. Rev. Lett. 85 4458 [8] Bermel P, Rodriguez A, Johnson S G, Joannopoulos J D and Marin S 2006 Phys. Rev. A 74 43818 [9] Zhou L, Gong Z R, Liu Y X, Sun C P and Nori F 2008 Phys. Rev. Lett. 101 100501 [10] Liao J Q, Huang J F, Liu Y X, Kuang L M and Sun C P 2009 Phys. Rev. A 80 14301 [11] Zou B C, Tan Z, Musa M and Zhu Y fu 2014 Phys. Rev. A 89 23806 [12] Yan C H and Wei L F 2016 Phys. Rev. A 94 53816 [13] Stolyarov E V 2020 Phys. Rev. A 102 63709 [14] Volz T, Reinhard A, Winger M, Badolato A, Hennessy K J, Hu E L and Imamoğlu A 2012 Nat. Photonics 6 605 [15] Guo M D 2021 Opt. Express 29 27653 [16] Ma L, Slattery O and Tang X 2017 J. Opt. 19 43001 [17] Long J L, Ku H S, Wu X, Xiu G, and Lake R E, Bal M, Liu Y X and Pappas D P 2018 Phys. Rev. Lett. 120 83602 [18] Dilley J, Nisbet-Jones P, Shore B W and Kuhn A 2012 Phys. Rev. A 85 23834 [19] Macha T, Urunuela E, Alt W, Ammenwerth M, Pandey D, Pfeifer H and Meschede D 2020 Phys. Rev. A 101 53406 [20] Körber M, Morin O, Langenfeld S, Neuzner A, Ritter S and Rempe G 2018 Nat. Photonics 12 18 [21] Oliveira R R, Borges H S, Souza J A and Villas-Boas C J 2018 Quantum. Inf. Process 17 311 [22] Wang L Y, Di K, Zhu Y F and Agarwal G S 2017 Phys. Rev. A 95 13841 [23] Li X M, Liu F M, Tian M H and Zhong X L 2020 J. Phys. Chem. C 124 23888 [24] Doeleman H M, Dieleman C D, Mennes C, Ehrler B and Koenderink A F 2020 ACS Nano 14 12027-36 [25] Hoang T B, Akselrod G M, Argyropoulos C, Huang J N, Smith D R and Mikkelsen M H 2015 Nat. Commun. 6 7788 [26] Peng P, Liu Y C, Xu D, Cao Q T, Lu G W, Gong Q H and Xiao Y F 2017 Phys. Rev. Lett. 119 233901 [27] Dutta R, Jain K, Venkatapathi M and Basu J K 2019 Phys. Rev. B 100 155413 [28] Salmanogli A 2019 Phys. Rev. A 100 13817 [29] Sobhani F, Heidarzadeh H and Bahador H 2020 Chin. Phys. B 29 068401 [30] Sidiropoulos T P H, Röder R, Geburt S, Hess O, Maier S A, Ronning C and Oulton R F 2014 Nat. Phys. 10 870 [31] Hoang T B, Akselrod G M and Mikkelsen M H 2016 Nano Lett. 16 270 [32] Kongsuwan N, Xiong X, Bai P, You J B, Png C E, Wu L and Hess O 2019 Nano Lett. 19 5853 [33] Ren J J, Gu Y, Zhao D X, Zhang F, Zhang T C and Gong Q H 2017 Phys. Rev. Lett. 118 73604 [34] Lu Y W, Li W, Liu R M, Wu Y X, Tan H S, Li Y Y and Liu J F 2022 Phys. Rev. B 106 115434 [35] Xu F X, Li X G and Zhang Z Y 2019 Acta Phys. Sin. 68 147103 (in Chinese) [36] Schlosser N, Reymond G, Protsenko I and Grangier P 2001 Nature 411 1024 [37] Karski M, Förster L, Choi J M, Steffen A, Alt W, Meschede D and Widera A 2009 Science 325 174 [38] Hugall J T, Singh A and van Hulst N F 2018 ACS Photonics 5 43 [39] Souza J A, Figueroa E, Chibani H, Villas-Boas C J and Rempe G 2013 Phys. Rev. Lett. 111 113602 [40] Waks E and Sridharan D 2010 Phys. Rev. A 82 43845 [41] Mücke M, Figueroa E, Bochmann J, Hahn C, Murr K, Ritter S, Villas-Boas C J and Rempe G 2010 Nature 465 7299 [42] Weis S, Rivire R, Delglise S, Gavartin E, Arcizet O, Schliesser A and Kippenberg T J 2010 Science 330 1520 [43] Guo M D and Su X M 2018 Ann. Phys. 530 1700427 [44] Hamsen C, Tolazzi K N, Wilk T and Rempe G 2017 Phys. Rev. Lett. 118 133604 [45] Jauffred L, Taheri S M, Schmitt R, Linke H, Oddershede L B 2015 Nano Lett. 15 4713 [46] Sivun D, Vidal C, Munkhbat B, Arnold N, Klar T A and Hrelescu C 2016 Nano Lett. 16 7203 [47] Bek A, Jansen R, Ringler M, Mayilo S, Klar T A and Feldmann J 2008 Nano Lett. 8 485 |
No Suggested Reading articles found! |
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
Altmetric
|
blogs
Facebook pages
Wikipedia page
Google+ users
|
Online attention
Altmetric calculates a score based on the online attention an article receives. Each coloured thread in the circle represents a different type of online attention. The number in the centre is the Altmetric score. Social media and mainstream news media are the main sources that calculate the score. Reference managers such as Mendeley are also tracked but do not contribute to the score. Older articles often score higher because they have had more time to get noticed. To account for this, Altmetric has included the context data for other articles of a similar age.
View more on Altmetrics
|
|
|