Please wait a minute...
Chin. Phys. B, 2023, Vol. 32(11): 118902    DOI: 10.1088/1674-1056/aceee8
INTERDISCIPLINARY PHYSICS AND RELATED AREAS OF SCIENCE AND TECHNOLOGY Prev   Next  

SLGC: Identifying influential nodes in complex networks from the perspectives of self-centrality, local centrality, and global centrality

Da Ai(艾达)1,†, Xin-Long Liu(刘鑫龙)1, Wen-Zhe Kang(康文哲)1, Lin-Na Li(李琳娜)1,2, Shao-Qing Lü(吕少卿)1, and Ying Liu(刘颖)1
1 School of Communication and Information Engineering, Xi'an University of Posts and Telecommunications, Xi'an 710121, China;
2 Network Ecological and Environmental Governance Research Center, Xi'an University of Posts and Telecommunications, Xi'an 710121, China
Abstract  Identifying influential nodes in complex networks and ranking their importance plays an important role in many fields such as public opinion analysis, marketing, epidemic prevention and control. To solve the issue of the existing node centrality measure only considering the specific statistical feature of a single dimension, a SLGC model is proposed that combines a node's self-influence, its local neighborhood influence, and global influence to identify influential nodes in the network. The exponential function of e is introduced to measure the node's self-influence; in the local neighborhood, the node's one-hop neighboring nodes and two-hop neighboring nodes are considered, while the information entropy is introduced to measure the node's local influence; the topological position of the node in the network and the shortest path between nodes are considered to measure the node's global influence. To demonstrate the effectiveness of the proposed model, extensive comparison experiments are conducted with eight existing node centrality measures on six real network data sets using node differentiation ability experiments, susceptible-infected-recovered (SIR) model and network efficiency as evaluation criteria. The experimental results show that the method can identify influential nodes in complex networks more accurately.
Keywords:  influential nodes      self-influence      local and global influence      complex networks  
Received:  19 June 2023      Revised:  07 August 2023      Accepted manuscript online:  10 August 2023
PACS:  89.75.Fb (Structures and organization in complex systems)  
Fund: Project supported by the Natural Science Basic Research Program of Shaanxi Province of China (Grant No. 2022JQ- 675) and the Youth Innovation Team of Shaanxi Universities.
Corresponding Authors:  Da Ai     E-mail:  aida@xupt.edu.cn

Cite this article: 

Da Ai(艾达), Xin-Long Liu(刘鑫龙), Wen-Zhe Kang(康文哲), Lin-Na Li(李琳娜), Shao-Qing Lü(吕少卿), and Ying Liu(刘颖) SLGC: Identifying influential nodes in complex networks from the perspectives of self-centrality, local centrality, and global centrality 2023 Chin. Phys. B 32 118902

[1] Boccaletti S, Latora V, Moreno Y, Chavez M and Hwang D U 2006 Phys. Rep. 424 175
[2] Roberto M V 2022 J. Metaverse 2 16
[3] Bai Y G, Liu S Y, Li Q and Yuan J 2021 IEEE Trans. Syst. Man Cyber. Syst. 52 3378
[4] Huang H M, Shen H, Meng Z Q, Chang H J and He H W 2019 Appl. Intell. 49 2137
[5] Ai S, Hong S, Zheng X Y, Wang Y and Liu X Z 2021 Int. J. Intell. Syst. 36 1903
[6] Yao S Y, Fan N and Hu J 2022 Optim. Lett. 16 1563
[7] Gupta M and Kumar P 2020 Eur. J. Oper. Res. 284 660
[8] Zhao J, Wang Y C and Deng Y 2020 Chaos Soliton Fractals 133 109637
[9] Bardoscia M, Barucca P, Battiston S, Caccioli F, Garlaschelli D, Saracco F, Squartini T and Caldarelli G 2021 Nat. Rev. Phys. 3 490
[10] Alp Z Z and Öğüdücü S G 2019 Knowl-Based Syst. 163 944
[11] Ding R, Ujang N, Hamid H B, Manan M S A, Li R, Albadareen S S M, Nochian A and Wu J J 2019 Netw. Spat. Econ. 19 1281
[12] Ait Rai K, Machkour M and Antari J 2023 Beni-Suef University J. Basic Appl. Sci. 12 18
[13] Freeman L C 1978 Soc. Netw. 1 215
[14] Lü L, Zhou T, Zhang Q M and Stanley H E 2016 Nat. Commun. 7 10168
[15] Wen T, Pelusi D and Deng Y 2020 Knowl-Based Syst. 195 105717
[16] Ding L H, Hong L, Sun B and Shi P 2019 Acta Phys. Sin. 68 128902 (in Chinese)
[17] Opsahl T, Agneessens F and Skvoretz J 2010 Soc. Netw. 32 245
[18] Sabidussi G 1966 Psychometrika 31 581
[19] Luan Y Y, Bao Z K and Zhang H F 2021 J. Syst. Sci. Complex. 34 2168
[20] Bonacich P and Lloyd P 2001 Soc. Netw. 23 191
[21] Brin S and Page L 1998 Comput. Netw. ISDN Syst. 30 107
[22] Curado M, Tortosa L and Vicent J F 2023 Inf. Sci. 628 177
[23] Kitsak M, Gallos L K, Havlin S, Liljeros F, Muchnik L, Stanley H E and Makse H A 2010 Nat. Phys. 6 888
[24] Maji G, Dutta A, Malta M C and Sen S 2021 Expert Syst. Appl. 179 115061
[25] Yan X L, Cui Y P and Ni S J 2020 Chin. Phys. B 29 048902
[26] Du Y X, Gao C, Hu Y, Mahadevan S and Deng Y 2014 Physica A 395 549
[27] Wang Y, Li H Z, Zhang L, Zhao L L and Li W L 2022 Chaos Soliton Fractals 162 112513
[28] Qiu L Q, Zhang J Y and Tian X B 2021 Appl. Intell. 51 4394
[29] Li M T, Zhang R S, Hu R J, Yang F, Yao Y B and Yuan Y N 2018 Int. J. Mod. Phys. B 32 1850118
[30] Ullah A, Wang B, Sheng J F, Long J and Sun Z J 2021 Sci. Rep. 11 6173
[31] Ullah A, Wang B, Sheng J F, Long J, Khan N and Sun Z J 2021 Expert Syst. Appl. 186 115778
[32] Shannon C E 1948 Bell Syst. Tech. J. 27 379
[33] http://konect.cc/networks/arenas-jazz/
[34] https://networkrepository.com/email-EU.php
[35] http://konect.cc/networks/arenas-email/
[36] http://konect.cc/networks/petster-hamster/
[37] https://snap.stanford.edu/data/ego-Facebook.html
[38] http://konect.cc/networks/arenas-pgp/
[39] Bae J and Kim S 2014 Physica A 395 549
[40] Gao S, Ma J, Chen Z M, Wang G H and Xing C M 2014 Physica A 403 130
[41] Pianosi F and Wagener T 2015 Environ. Model. Softw. 67 1
[42] Pastor-Satorras R and Vespignani A 2001 Phys. Rev. E 63 066117
[1] Self-similarity of complex networks under centrality-based node removal strategy
Dan Chen(陈单), Defu Cai(蔡德福), and Housheng Su(苏厚胜). Chin. Phys. B, 2023, 32(9): 098903.
[2] Important edge identification in complex networks based on local and global features
Jia-Hui Song(宋家辉). Chin. Phys. B, 2023, 32(9): 098901.
[3] Stability and multistability of synchronization in networks of coupled phase oscillators
Yun Zhai(翟云), Xuan Wang(王璇), Jinghua Xiao(肖井华), and Zhigang Zheng(郑志刚). Chin. Phys. B, 2023, 32(6): 060503.
[4] Identification of key recovering node for spatial networks
Zijian Yan(严子健), Yongxiang Xia(夏永祥), Lijun Guo(郭丽君), Lingzhe Zhu(祝令哲), Yuanyuan Liang(梁圆圆), and Haicheng Tu(涂海程). Chin. Phys. B, 2023, 32(6): 068901.
[5] AG-GATCN: A novel method for predicting essential proteins
Peishi Yang(杨培实), Pengli Lu(卢鹏丽), and Teng Zhang(张腾). Chin. Phys. B, 2023, 32(5): 058902.
[6] AIGCrank: A new adaptive algorithm for identifying a set of influential spreaders in complex networks based on gravity centrality
Ping-Le Yang(杨平乐), Lai-Jun Zhao(赵来军), Chen Dong(董晨),Gui-Qiong Xu(徐桂琼), and Li-Xin Zhou(周立欣). Chin. Phys. B, 2023, 32(5): 058901.
[7] Analysis of cut vertex in the control of complex networks
Jie Zhou(周洁), Cheng Yuan(袁诚), Zu-Yu Qian(钱祖燏), Bing-Hong Wang(汪秉宏), and Sen Nie(聂森). Chin. Phys. B, 2023, 32(2): 028902.
[8] Vertex centrality of complex networks based on joint nonnegative matrix factorization and graph embedding
Pengli Lu(卢鹏丽) and Wei Chen(陈玮). Chin. Phys. B, 2023, 32(1): 018903.
[9] An extended improved global structure model for influential node identification in complex networks
Jing-Cheng Zhu(朱敬成) and Lun-Wen Wang(王伦文). Chin. Phys. B, 2022, 31(6): 068904.
[10] A novel method for identifying influential nodes in complex networks based on gravity model
Yuan Jiang(蒋沅), Song-Qing Yang(杨松青), Yu-Wei Yan(严玉为),Tian-Chi Tong(童天驰), and Ji-Yang Dai(代冀阳). Chin. Phys. B, 2022, 31(5): 058903.
[11] Characteristics of vapor based on complex networks in China
Ai-Xia Feng(冯爱霞), Qi-Guang Wang(王启光), Shi-Xuan Zhang(张世轩), Takeshi Enomoto(榎本刚), Zhi-Qiang Gong(龚志强), Ying-Ying Hu(胡莹莹), and Guo-Lin Feng(封国林). Chin. Phys. B, 2022, 31(4): 049201.
[12] Robust H state estimation for a class of complex networks with dynamic event-triggered scheme against hybrid attacks
Yahan Deng(邓雅瀚), Zhongkai Mo(莫中凯), and Hongqian Lu(陆宏谦). Chin. Phys. B, 2022, 31(2): 020503.
[13] Finite-time synchronization of uncertain fractional-order multi-weighted complex networks with external disturbances via adaptive quantized control
Hongwei Zhang(张红伟), Ran Cheng(程然), and Dawei Ding(丁大为). Chin. Phys. B, 2022, 31(10): 100504.
[14] LCH: A local clustering H-index centrality measure for identifying and ranking influential nodes in complex networks
Gui-Qiong Xu(徐桂琼), Lei Meng(孟蕾), Deng-Qin Tu(涂登琴), and Ping-Le Yang(杨平乐). Chin. Phys. B, 2021, 30(8): 088901.
[15] Detection of influential nodes with multi-scale information
Jing-En Wang(王静恩), San-Yang Liu(刘三阳), Ahmed Aljmiai, and Yi-Guang Bai(白艺光). Chin. Phys. B, 2021, 30(8): 088902.
No Suggested Reading articles found!