Please wait a minute...
Chin. Phys. B, 2023, Vol. 32(11): 116101    DOI: 10.1088/1674-1056/acce99
CONDENSED MATTER: STRUCTURAL, MECHANICAL, AND THERMAL PROPERTIES Prev   Next  

Structural origin for composition-dependent nearest atomic distance in Cu-Zr metallic glass

Chi Zhang(张驰), Hua-Shan Liu(刘华山), and Hai-Long Peng(彭海龙)
School of Materials Science and Engineering, Central South University, Changsha 410083, China
Abstract  We systematically investigate the structures of Cu-Zr metallic glass (MG) by varying the Cu concentration in classic molecular-dynamics simulation. From the pair distribution functions (PDFs), it is found that the nearest atomic distance between Zr atom and Zr atom increases significantly after adding Cu, which is related to the composition-dependent coordination behavior between Cu atom and Zr atom in the nearest neighbors. The portion of PDF related to the nearest connection is decomposed into the contributions from quadrilateral structure, pentagonal structure, hexagonal structure, and heptagonal bipyramid structure. Although the population of denser structures, i.e. 5-, 6-, and 7-number sharing ones, increases with Cu addition increasing, the connection distances between the central atoms in all these bipyramids increase for Zr-Zr pairs, leading to the expansion of Zr-Zr nearest atomic distance. These results unveil the effect of the interplay between chemical interaction and geometric packing on the atomic-level structure in Cu-Zr metallic glasses.
Keywords:  metallic glass      structure      molecular dynamics  
Received:  11 March 2023      Revised:  03 April 2023      Accepted manuscript online:  20 April 2023
PACS:  61.43.Dq (Amorphous semiconductors, metals, and alloys)  
  64.70.pe (Metallic glasses)  
Fund: Project supported by the Open Research Fund of Songshan Lake Materials Laboratory, China (Grant No. 2022SLABFN14).
Corresponding Authors:  Hai-Long Peng     E-mail:  hailong.peng@csu.edu.cn

Cite this article: 

Chi Zhang(张驰), Hua-Shan Liu(刘华山), and Hai-Long Peng(彭海龙) Structural origin for composition-dependent nearest atomic distance in Cu-Zr metallic glass 2023 Chin. Phys. B 32 116101

[1] Wang W H, Dong C and Shek C H 2004 Mater. Sci. Eng. R. 44 45
[2] Schun C A, Hufnagel T C and Ramamurty U 2007 Acta Mater. 55 4067
[3] Sun B A and Wang W H 2015 Prog. Mater. Sci. 74 211
[4] Zhang J Y, Zhou Z Q, Zhang Z B, Park M H, Yu Q, Li Z and Jiang L 2022 Mater. Futures 1 012001
[5] Bernal J D 1959 Nature 183 141
[6] Bernal J D 1960 Nature 185 67
[7] Gaskell P H 1978 Nature 276 484
[8] Zheng J, Carlson W and Reed J S 1995 J. Am. Ceram. Soc. 78 2527
[9] Miracle D B, Sanders W S and Senkov O N 2003 Phil. Mag. 83 2409
[10] Cheng Y Q and Ma E 2011 Prog. Mater. Sci. 56 379
[11] Kang J, Zhu J, Wei S H, Schwegler E and Kim Y H 2012 Phys. Rev. Lett. 108 115901
[12] Frank F C 1952 Proc. R. Soc. Lond. Ser. A 215 43
[13] Schenk T, Holland-Moritz D, Simonet V, Bellissent R and Herlach D M 2002 Phys. Rev. Lett. 89 075507
[14] Kelton K F, Lee G, Gangopadhyay A K, Hyers R, Rathz T J and Rogers J R 2003 Phys. Rev. Lett. 90 195504
[15] Peng H L, Li M Z, Wang W H, Wang C Z and Ho K M 2010 Appl. Phys. Lett. 96 021901
[16] Cheng Y Q, Ma E and Sheng H W 2009 Phys. Rev. Lett. 102 245501
[17] Kaban I, Jovari P, Kokotin V, Shuleshova O, Beuneu B, Saksl K, Mattern N, Eckert J and Greer A L 2013 Acta Mater. 61 2509
[18] Yakymovich A, Shtablavyi I and Mudry S 2014 J. Alloys Compd. 610 438
[19] Peng H L, Voigtmann T, Kolland G, Kobatake H and Brillo J 2015 Phys. Rev. B 92 184201
[20] Peng H L, Yang F, Liu S T, Holland-Moritz D, Kordel T, Hansen T and Voigtmann Th 2019 Phys. Rev. B 100 104202
[21] Peng H L, Li M Z and Wang W H 2013 Appl. Phys. Lett. 102 131903
[22] Li Y, Guo Q, Kalb J A and Thompson C V 2008 Science 322 1816
[23] Ma D, Stoica A D, Wang X L, Lu Z P, Xu M and Kramer M 2009 Phys. Rev. B 80 014202
[24] Plimpton S 1995 J. Comp. Phys. 117 1
[25] Mendelev M I, Sun Y and Zhang Y 2019 J. Chem. Phys. 151 214502
[26] Bailey N P, Schiotz J and Jacobsen K W 2004 Phys. Rev. B 69 144205
[27] Trady S, Hasnaoui A and Mazroui M 2017 J. Non-Cryst. Soilds 468 27
[28] Pan S P, Qin J Y, Wang W M and Gu T K 2011 Phys. Rev. B 84 092201
[29] Pauling L and Am J 1947 Chem. Soc. 69 542
[30] Nowak B, Holland-Moritz D and Yang F 2017 Phys. Rev. Materi. 1 025603
[31] Lu X Q, Feng S D, Li L and Zhang Y H 2022 Modelling Simul. Mater. Sci. Eng. 30 065005
[32] Finney J L 1970 Proc. R. Soc. Lond. A 319 479
[33] Yuan Y K, Kim D S, Zhou J H and Chang D J 2022 Nat. Mater. 21 95
[1] Universal basis underlying temperature, pressure and size induced dynamical evolution in metallic glass-forming liquids
H P Zhang(张华平), B B Fan(范蓓蓓), J Q Wu(吴佳琦), and M Z Li(李茂枝). Chin. Phys. B, 2024, 33(1): 016101.
[2] Anelasticity to plasticity transition in a model two-dimensional amorphous solid
Baoshuang Shang(尚宝双). Chin. Phys. B, 2024, 33(1): 016102.
[3] Ab initio nonadiabatic molecular dynamics study on spin-orbit coupling induced spin dynamics in ferromagnetic metals
Wansong Zhu(朱万松), Zhenfa Zheng(郑镇法), Qijing Zheng(郑奇靖), and Jin Zhao(赵瑾). Chin. Phys. B, 2024, 33(1): 016301.
[4] Geometries and electronic structures of ZrnCu (n = 2-12) clusters: A joint machine-learning potential density functional theory investigation
Yizhi Wang(王一志), Xiuhua Cui(崔秀花), Jing Liu(刘静), Qun Jing(井群), Haiming Duan(段海明), and Haibin Cao(曹海宾). Chin. Phys. B, 2024, 33(1): 016109.
[5] Temperature effect on nanotwinned Ni under nanoindentation using molecular dynamic simulation
Xi He(何茜), Ziyi Xu(徐子翼), and Yushan Ni(倪玉山). Chin. Phys. B, 2024, 33(1): 016201.
[6] Resistive switching behavior and mechanism of HfOx films with large on/off ratio by structure design
Xianglin Huang(黄香林), Ying Wang(王英), Huixiang Huang(黄慧香), Li Duan(段理), and Tingting Guo(郭婷婷). Chin. Phys. B, 2024, 33(1): 017303.
[7] Valley transport in Kekulé structures of graphene
Juan-Juan Wang(王娟娟) and Jun Wang(汪军). Chin. Phys. B, 2024, 33(1): 017801.
[8] Optical manipulation of the topological phase in ZrTe5 revealed by time- and angle-resolved photoemission
Chaozhi Huang(黄超之), Chengyang Xu(徐骋洋), Fengfeng Zhu(朱锋锋), Shaofeng Duan(段绍峰), Jianzhe Liu(刘见喆), Lingxiao Gu(顾凌霄), Shichong Wang(王石崇), Haoran Liu(刘浩然), Dong Qian(钱冬), Weidong Luo(罗卫东), and Wentao Zhang(张文涛). Chin. Phys. B, 2024, 33(1): 017901.
[9] High responsivity photodetectors based on graphene/WSe2 heterostructure by photogating effect
Shuping Li(李淑萍), Ting Lei(雷挺), Zhongxing Yan(严仲兴), Yan Wang(王燕), Like Zhang(张黎可), Huayao Tu(涂华垚), Wenhua Shi(时文华), and Zhongming Zeng(曾中明). Chin. Phys. B, 2024, 33(1): 018501.
[10] Structure and material study of dielectric laser accelerators based on the inverse Cherenkov effect
Bin Sun(孙斌), Yang-Fan He(何阳帆), Ruo-Yun Luo(罗若云), Tai-Yang Zhang(章太阳), Qiang Zhou(周强), Shao-Yi Wang(王少义), Du Wang(王度), and Zong-Qing Zhao(赵宗清). Chin. Phys. B, 2023, 32(9): 094101.
[11] Electronic structure study of the charge-density-wave Kondo lattice CeTe3
Bo Wang(王博), Rui Zhou(周锐), Xuebing Luo(罗学兵), Yun Zhang(张云), and Qiuyun Chen(陈秋云). Chin. Phys. B, 2023, 32(9): 097103.
[12] Ultra-high photoresponsive photodetector based on ReS2/SnS2 heterostructure
Binghui Wang(王冰辉), Yanhui Xing(邢艳辉), Shengyuan Dong(董晟园), Jiahao Li(李嘉豪), Jun Han(韩军), Huayao Tu(涂华垚), Ting Lei(雷挺), Wenxin He(贺雯馨), Baoshun Zhang(张宝顺), and Zhongming Zeng(曾中明). Chin. Phys. B, 2023, 32(9): 098504.
[13] Size effect on transverse free vibrations of ultrafine nanothreads
Zhuoqun Zheng(郑卓群), Han Li(李晗), Zhu Su(宿柱), Nan Ding(丁楠), Xu Xu(徐旭),Haifei Zhan(占海飞), and Lifeng Wang(王立峰). Chin. Phys. B, 2023, 32(9): 096202.
[14] Effect of CeO2 doping on the coercivity of 2:17 type SmCo magnets
Xiao-Lei Gao(高晓磊), Zhuang Liu(刘壮), Guang-Qing Wang(王广庆), Chao-Qun Zhu(竺超群), Wen-Xin Cheng(程文鑫), Ming-Xiao Zhang(张明晓), Xin-Cai Liu(刘新才), Ren-Jie Chen(陈仁杰), and A-Ru Yan(闫阿儒). Chin. Phys. B, 2023, 32(9): 097504.
[15] Important edge identification in complex networks based on local and global features
Jia-Hui Song(宋家辉). Chin. Phys. B, 2023, 32(9): 098901.
No Suggested Reading articles found!