Please wait a minute...
Chin. Phys. B, 2023, Vol. 32(11): 117302    DOI: 10.1088/1674-1056/acd8a5
CONDENSED MATTER: ELECTRONIC STRUCTURE, ELECTRICAL, MAGNETIC, AND OPTICAL PROPERTIES Prev   Next  

Low-damage interface enhancement-mode AlN/GaN high electron mobility transistors with 41.6% PAE at 30 GHz

Si-Yu Liu(刘思雨)1, Jie-Jie Zhu(祝杰杰)1,†, Jing-Shu Guo(郭静姝)1, Kai Cheng(程凯)2, Min-Han Mi(宓珉瀚)1, Ling-Jie Qin(秦灵洁)1, Bo-Wen Zhang(张博文)1, Min Tang(唐旻)3, and Xiao-Hua Ma(马晓华)1,‡
1 Key Laboratory of Wide Bandgap Semiconductor Technology, School of Microelectronics, Xidian University, Xi'an 710071, China;
2 Enkris Semiconductor, Inc., Suzhou 215123, China;
3 State Key Discipline Laboratory of Radio Frequency Heterogeneous Interation, Shanghai Jiao Tong University, Shanghai 200240, China
Abstract  This paper reports a low-damage interface treatment process for AlN/GaN high electron mobility transistor (HEMT) and demonstrates the excellent power characteristics of radio-frequency (RF) enhancementmode (E-mode) AlN/GaN HEMT. An RF E-mode device with 2.9-nm-thick AlN barrier layer fabricated by remote plasma oxidation (RPO) treatment at 300 °C. The device with a gate length of 0.12-μ m has a threshold voltage (Vth) of 0.5 V, a maximum saturation current of 1.16 A/mm, a high Ion/Ioff ratio of 1× 108, and a 440-mS/mm peak transconductance. During continuous wave (CW) power testing, the device demonstrates that at 3.6 GHz, a power added efficiency is 61.9% and a power density is 1.38 W/mm, and at 30 GHz, a power added efficiency is 41.6% and a power density is 0.85 W/mm. Furthermore, the RPO treatment improves the mobility of RF E-mode AlN/GaN HEMT. All results show that the RPO processing method has good applicability to scaling ultrathin barrier E-mode AlN/GaN HEMT for 5G compliable frequency ranging from sub-6 GHz to Ka-band.
Keywords:  GaN      low damage      enhancement mode      power-added efficiency  
Received:  13 April 2023      Revised:  04 May 2023      Accepted manuscript online:  25 May 2023
PACS:  73.61.Ey (III-V semiconductors)  
  73.40.Qv (Metal-insulator-semiconductor structures (including semiconductor-to-insulator))  
  81.65.Mq (Oxidation)  
Fund: Project supported by the Fundamental Research Funds for the National Key Research and Development Program, China (Grant No. 2020YFB1807403) and the National Natural Science Foundation of China (Grant Nos. 62174125, 62188102, and 62131014).
Corresponding Authors:  Jie-Jie Zhu, Xiao-Hua Ma     E-mail:  jjzhu@mail.xidian.edu.cn;xhma@xidian.edu.cn

Cite this article: 

Si-Yu Liu(刘思雨), Jie-Jie Zhu(祝杰杰), Jing-Shu Guo(郭静姝), Kai Cheng(程凯), Min-Han Mi(宓珉瀚), Ling-Jie Qin(秦灵洁), Bo-Wen Zhang(张博文), Min Tang(唐旻), and Xiao-Hua Ma(马晓华) Low-damage interface enhancement-mode AlN/GaN high electron mobility transistors with 41.6% PAE at 30 GHz 2023 Chin. Phys. B 32 117302

[1] Kong Y, Zhou J, Kong C, et al. 2014 IEEE Electron Dev. Lett. 35 336
[2] Maroldt S, Haupt C, Pletschen W, et al. 2009 Jpn. J. Appl. Phys. 48 04C083
[3] Zhou Y, Zhu J, Mi M, et al. 2021 IEEE J. Electron Dev. 9 756
[4] Xie H, Liu Z, Hu W, et al. 2021 IMWS-AMP. 2 397
[5] Xie H, Liu Z, Hu W, et al. 2020 IEEE Microw. Wirel. Co. 31 141
[6] Fujii K and Morkner H 2003 IEEE MTT-S Int. Microw. Symp. Dig. 2 859
[7] Feng Z H, Zhou R, Xie S Y, et al. 2010 IEEE Electron Dev. Lett. 31 1386
[8] Huang S, Liu X, Zhang J, et al. 2015 IEEE Electron Dev. Lett. 36 754
[9] Kong Y, Zhou J and Kong C 2014 IEEE Electron Dev. Lett. 35 336
[10] Zhou Q, Chen W, Liu S, et al. 2013 25$th International Symposium on Power Semiconductor Devices & IC's (ISPSD), Kanazawa, Japan, 2013, pp. 195-198
[11] Anderson T J, Koehler A D, Greenlee J D, et al. 2014 IEEE Electron Dev. Lett. 35 826
[12] Guerra D, Akis R, Marino F A, et al. 2010 IEEE Electron Dev. Lett. 31 1217
[13] Radjenovic B M, Radmilovic-Radjenovic M D and Petrovic Z L 2008 IEEE T Plasma Sci. 36 874
[14] Denninghoff D J, Dasgupta S, Lu J, et al. 2012 IEEE Electron Dev. Lett. 33 785
[15] Wang R, Saunier P, Xing X, et al. 2010 IEEE Electron Dev. Lett. 31 1383
[16] Xiao M, Duan X, Zhang J, et al. 2018 IEEE Electron Dev. Lett. 39 719
[17] Liu S, Zhu J, Guo J, et al. 2022 IEEE Electron Dev. Lett. 43 1621
[18] Chang C Y, Pearton S J, Lo C F, et al. 2009 Appl. Phys. Lett. 94 263505
[19] Chang C Y, Lo C F, Ren F, et al. 2010 Phys. Status. Solidi-C 7 2415
[20] Lee D S, Chung J W, Wang H, et al. 2011 IEEE Electron Dev. Lett. 32 755
[21] Chung J W, Roberts J C, Piner E L, et al. 2008 IEEE Electron Dev. Lett. 29 1196
[22] Corrion A L, Shinohara K, Regan D, et al. 2010 IEEE Electron Dev. Lett. 31 1116
[23] Zine-eddine T, Zahra H and Zitouni M 2019 Sci-Adv. Mater. Dev. 4 180
[24] Then H W, Chow L A, Dasgupta S, et al. 2015 IEEE VLSI Technol. T202
[25] Feng Z H, Zhou R, Xie S Y, et al. 2010 IEEE Electron Dev. Lett. 31 1386
[26] Then H W, Dasgupta S, Radosavljevic M, et al. 2019 IEEE IEDM, San Francisco, CA, USA, 2019, pp. 17.3.1-17.3.4
[27] Xuan L T, Aubry R, Michel N, et al. 2016 IEEE EuMIC. 65
[28] Wang C, Chen Y C, Hsu H T, et al. 2021 Materials 14 6558
[1] Photophysics of metal-organic frameworks: A brief overview
Qingshuo Liu(刘晴硕), Junhong Yu(余俊宏), and Jianbo Hu(胡建波). Chin. Phys. B, 2024, 33(1): 017204.
[2] Magnetic and electronic properties of La-doped hexagonal 4H-SrMnO3
Jie Li(李杰), Yinan Chen(陈一楠), Nuo Gong(宫诺), Xin Huang(黄欣), Zhihong Yang(杨志红), and Yakui Weng(翁亚奎). Chin. Phys. B, 2024, 33(1): 017502.
[3] Effects of Mg-doping temperature on the structural and electrical properties of nonpolar a-plane p-type GaN films
Kai Chen(陈凯), Jianguo Zhao(赵见国), Yu Ding(丁宇), Wenxiao Hu(胡文晓), Bin Liu(刘斌), Tao Tao(陶涛), Zhe Zhuang(庄喆), Yu Yan(严羽), Zili Xie(谢自力), Jianhua Chang(常建华), Rong Zhang(张荣), and Youdou Zheng(郑有炓). Chin. Phys. B, 2024, 33(1): 016801.
[4] Novel double channel reverse conducting GaN HEMT with an integrated MOS-channel diode
Xintong Xie(谢欣桐), Cheng Zhang(张成), Zhijia Zhao(赵智家), Jie Wei(魏杰),Xiaorong Luo(罗小蓉), and Bo Zhang(张波). Chin. Phys. B, 2023, 32(9): 098506.
[5] Proton irradiation-induced dynamic characteristics on high performance GaN/AlGaN/GaN Schottky barrier diodes
Tao Zhang(张涛), Ruo-Han Li(李若晗), Kai Su(苏凯), Hua-Ke Su(苏华科), Yue-Guang Lv(吕跃广), Sheng-Rui Xu(许晟瑞), Jin-Cheng Zhang(张进成), and Yue Hao(郝跃). Chin. Phys. B, 2023, 32(8): 087301.
[6] Assessing high-energy x-ray and proton irradiation effects on electrical properties of P-GaN and N-GaN thin films
Aoxue Zhong(钟傲雪), Lei Wang(王磊), Yun Tang(唐蕴), Yongtao Yang(杨永涛), Jinjin Wang(王进进), Huiping Zhu(朱慧平), Zhenping Wu(吴真平), Weihua Tang(唐为华), and Bo Li(李博). Chin. Phys. B, 2023, 32(7): 076102.
[7] High-performance vertical GaN field-effect transistor with an integrated self-adapted channel diode for reverse conduction
Siyu Deng(邓思宇), Dezun Liao(廖德尊), Jie Wei(魏杰), Cheng Zhang(张成),Tao Sun(孙涛), and Xiaorong Luo(罗小蓉). Chin. Phys. B, 2023, 32(7): 078503.
[8] Molecular dynamics study on the dependence of thermal conductivity on size and strain in GaN nanofilms
Ying Tang(唐莹), Junkun Liu(刘俊坤), Zihao Yu(于子皓), Ligang Sun(孙李刚), and Linli Zhu(朱林利). Chin. Phys. B, 2023, 32(6): 066502.
[9] Research on self-supporting T-shaped gate structure of GaN-based HEMT devices
Peng Zhang(张鹏), Miao Li(李苗), Jun-Wen Chen(陈俊文), Jia-Zhi Liu(刘加志), and Xiao-Hua Ma(马晓华). Chin. Phys. B, 2023, 32(6): 067305.
[10] Optically pumped wavelength-tunable lasing from a GaN beam cavity with an integrated Joule heater pivoted on Si
Feifei Qin(秦飞飞), Yang Sun(孙阳), Ying Yang(杨颖), Xin Li(李欣), Xu Wang(王旭), Junfeng Lu(卢俊峰), Yongjin Wang(王永进), and Gangyi Zhu(朱刚毅). Chin. Phys. B, 2023, 32(5): 054210.
[11] Realization of high-efficiency AlGaN deep ultraviolet light-emitting diodes with polarization-induced doping of the p-AlGaN hole injection layer
Yi-Wei Cao(曹一伟), Quan-Jiang Lv(吕全江), Tian-Peng Yang(杨天鹏), Ting-Ting Mi(米亭亭),Xiao-Wen Wang(王小文), Wei Liu(刘伟), and Jun-Lin Liu(刘军林). Chin. Phys. B, 2023, 32(5): 058503.
[12] Numerical study on THz radiation of two-dimensional plasmon resonance of GaN HEMT array
Hongyang Guo(郭宏阳), Ping Zhang(张平), Shengpeng Yang(杨生鹏), Shaomeng Wang(王少萌), and Yubin Gong(宫玉彬). Chin. Phys. B, 2023, 32(4): 040701.
[13] Reverse gate leakage mechanism of AlGaN/GaN HEMTs with Au-free gate
Xin Jiang(蒋鑫), Chen-Hao Li(李晨浩), Shuo-Xiong Yang(羊硕雄), Jia-Hao Liang(梁家豪), Long-Kun Lai(来龙坤), Qing-Yang Dong(董青杨), Wei Huang(黄威),Xin-Yu Liu(刘新宇), and Wei-Jun Luo(罗卫军). Chin. Phys. B, 2023, 32(3): 037201.
[14] Low-resistance ohmic contacts on InAlN/GaN heterostructures with MOCVD-regrown n+-InGaN and mask-free regrowth process
Jingshu Guo(郭静姝), Jiejie Zhu(祝杰杰), Siyu Liu(刘思雨), Jielong Liu(刘捷龙), Jiahao Xu(徐佳豪), Weiwei Chen(陈伟伟), Yuwei Zhou(周雨威), Xu Zhao(赵旭), Minhan Mi(宓珉瀚), Mei Yang(杨眉), Xiaohua Ma(马晓华), and Yue Hao(郝跃). Chin. Phys. B, 2023, 32(3): 037303.
[15] Influence of the lattice parameter of the AlN buffer layer on the stress state of GaN film grown on (111) Si
Zhen-Zhuo Zhang(张臻琢), Jing Yang(杨静), De-Gang Zhao(赵德刚), Feng Liang(梁锋), Ping Chen(陈平), and Zong-Shun Liu(刘宗顺). Chin. Phys. B, 2023, 32(2): 028101.
No Suggested Reading articles found!