Please wait a minute...
Chin. Phys. B, 2023, Vol. 32(11): 116701    DOI: 10.1088/1674-1056/acf301
Special Issue: SPECIAL TOPIC — Celebrating the 100th Anniversary of Physics Discipline of Northwest University
SPECIAL TOPIC—Celebrating the 100th Anniversary of Physics Discipline of Northwest University Prev   Next  

Interfacial photoconductivity effect of type-I and type-II Sb2Se3/Si heterojunctions for THz wave modulation

Xue-Qin Cao(曹雪芹), Yuan-Yuan Huang(黄媛媛), Ya-Yan Xi(席亚妍), Zhen Lei(雷珍), Jing Wang(王静), Hao-Nan Liu(刘昊楠), Ming-Jian Shi(史明坚), Tao-Tao Han(韩涛涛), Meng-En Zhang(张蒙恩), and Xin-Long Xu(徐新龙)
Shaanxi Joint Laboratory of Graphene, State Key Laboratory Incubation Base of Photoelectric Technology and Functional Materials, International Collaborative Center on Photoelectric Technology, and Nano Functional Materials, Institute of Photonics & Photon-Technology, Northwest University, Xi'an 710069, China
Abstract  An in-depth understanding of the photoconductivity and photocarrier density at the interface is of great significance for improving the performance of optoelectronic devices. However, extraction of the photoconductivity and photocarrier density at the heterojunction interface remains elusive. Herein, we have obtained the photoconductivity and photocarrier density of 173 nm Sb2Se3/Si (type-I heterojunction) and 90 nm Sb2Se3/Si (type-II heterojunction) utilizing terahertz (THz) time-domain spectroscopy (THz-TDS) and a theoretical Drude model. Since type-I heterojunctions accelerate carrier recombination and type-II heterojunctions accelerate carrier separation, the photoconductivity and photocarrier density of the type-II heterojunction (21.8× 104 S·m-1, 1.5× 1015 cm-3) are higher than those of the type-I heterojunction (11.8× 104 S·m-1, 0.8× 1015 cm-3). These results demonstrate that a type-II heterojunction is superior to a type-I heterojunction for THz wave modulation. This work highlights THz-TDS as an effective tool for studying photoconductivity and photocarrier density at the heterojunction interface. In turn, the intriguing interfacial photoconductivity effect provides a way to improve the THz wave modulation performance.
Keywords:  photoconductivity      Sb2Se3/Si heterojunctions      THz-TDS      Drude model  
Received:  26 June 2023      Revised:  12 August 2023      Accepted manuscript online:  23 August 2023
PACS:  67.30.hp (Interfaces)  
  68.35.Fx (Diffusion; interface formation)  
  79.60.Jv (Interfaces; heterostructures; nanostructures)  
Fund: Project supported by the National Natural Science Foundation of China (Grant Nos. 12261141662, 12074311, and 12004310).
Corresponding Authors:  Yuan-Yuan Huang, Xin-Long Xu     E-mail:  yyhuang@nwu.edu.cn;xlxuphy@nwu.edu.cn

Cite this article: 

Xue-Qin Cao(曹雪芹), Yuan-Yuan Huang(黄媛媛), Ya-Yan Xi(席亚妍), Zhen Lei(雷珍), Jing Wang(王静), Hao-Nan Liu(刘昊楠), Ming-Jian Shi(史明坚), Tao-Tao Han(韩涛涛), Meng-En Zhang(张蒙恩), and Xin-Long Xu(徐新龙) Interfacial photoconductivity effect of type-I and type-II Sb2Se3/Si heterojunctions for THz wave modulation 2023 Chin. Phys. B 32 116701

[1] Du W Y, Huang Y Y, Zhou Y X and Xu X L 2022 J. Phys. D:Appl. Phys. 55 223002
[2] Huang Y, Yao Z, He C, Zhu L, Zhang L, Bai J and Xu X 2019 J. Phys.:Condens. Matter 31 153001
[3] Zhong Y, Cai T, Low T, Chen H and Lin X 2022 Phys. Rev. B 106 035304
[4] Leng N, Ma L and Bai M 2022 Opt. Express 30 44095
[5] Cong X, Zheng Y, Huang F, You Q, Tang J, Fang F, Jiang K, Han C and Shi Y 2022 Nano Res. 15 8442
[6] Wang C, Ni H, Dai J, Liu T, Wu Z, Chen X, Dong Z, Qian J and Wu Z 2022 Chem. Phys. Lett. 803 139815
[7] Gasparotto A, Maccato C, Sada C, Carraro G, Kondarides D I, Bebelis S, Petala A, La Porta A, Altantzis T and Barreca D 2019 Adv. Sustainable Syst. 3 1900046
[8] Luo M, Song J, Wang J, Pan X, Hong H and Nötzel R 2022 AIP Advances 12 115112
[9] Yan D, Xu D, Li J, Wang Y, Liang F, Wang J, Yan C, Liu H, Shi J, Tang L, He Y, Zhong K, Lin Z, Zhang Y, Cheng H, Shi W, Yao J and Wu Y 2018 Opt. Mater. 78 484
[10] Guo H C, Zhang X H, Liu W, Yong A M and Tang S H 2009 J. Appl. Phys. 106 063104
[11] Ulbricht R, Hendry E, Shan J, Heinz T F and Bonn M 2011 Rev. Mod. Phys. 83 543
[12] Yue J, Ling F and Yao J 2020 Opt. Mater. Express 10 2919
[13] Jakhar A, Kumar P, Husain S, Dhyani V and Das S 2020 ACS Appl. Nano Mater. 3 10767
[14] Mamta, Singh Y, Maurya K K and Singh V N 2022 Materials Today Sustainability 18 100148
[15] Ghosh S, Moreira M V B, Fantini C and González J C 2020 Sol. Energy 211 613
[16] Han T, Luo M, Liu Y, Lu C, Ge Y, Xue X, Dong W, Huang Y, Zhou Y and Xu X 2022 J. Colloid Interface Sci. 628 886
[17] Basak A and Singh U P 2021 Sol. Energy Mater. Sol. Cells 230 111184
[18] Hobson T D C, Phillips L J, Hutter O S, Shiel H, Swallow J E N, Savory C N, Nayak P K, Mariotti S, Das B, Bowen L, Jones L A H, Featherstone T J, Smiles M J, Farnworth M A, Zoppi G, Thakur P K, Lee T-L, Snaith H J, Leighton C, Scanlon D O, Dhanak V R, Durose K, Veal T D and Major J D 2020 Chem. Mater. 32 2621
[19] Choi D, Jang Y, Lee J, Jeong G H, Whang D, Hwang S W, Cho K S and Kim S W 2014 Sci. Rep. 4 6714
[20] Liu H, Luo G, Cheng H, Yang Z, Xie Z, Zhang K H L and Yang Y 2022 J. Phys. Chem. Lett. 13 4988
[21] Ren D, Chen S, Cathelinaud M, Liang G, Ma H and Zhang X 2020 ACS Appl. Mater. Interfaces 12 30572
[22] Cheng C H, Li M, Song H Q, Li W H, Leng J, Tian W, Cui R, Zhao C, Jin S, Liu W and Cong S 2021 ACS Appl. Energ. Mater. 4 5079
[23] Wang K, Chen C, Liao H, Wang S, Tang J, Beard M C and Yang Y 2019 J. Phys. Chem. Lett. 10 4881
[24] Yu L, Wang B, Han H, Dai C, Liu W and Wang Y 2022 J. Lumin. 244 118704
[25] Li G, Li Z, Chen J, Chen X, Qiao S, Wang S, Xu Y and Mai Y 2018 J. Alloys Compd. 737 67
[26] Jakhar A, Kumar P, Husain S, Dhyani V, Chouksey A, Rai P K, Rawat J S and Das S 2021 Nano Express 2 040004
[27] Zheng W, Fan F, Chen M, Chen S and Chang S J 2016 AIP Advances 6 075105
[28] Chen S, Fan F, Miao Y, He X, Zhang K and Chang S 2016 Nanoscale 8 4713
[29] Grad L, von Rohr F, Zhao J, Hengsberger M and Osterwalder J 2020 Phys. Rev. Mater. 4 105404
[30] Du W Y, Yao Z H, Zhu L P, Huang Y Y, Lei Z, Xi F G, Jin Y P and Xu X L 2020 Appl. Phys. Lett. 117 081106
[31] Zhang X C and Auston D H 1992 J. Appl. Phys. 71 326
[32] Moez A A and Ali A I 2021 Journal of Materials Science:Materials in Electronics 32 1303
[33] Tang R, Zhou S, Zhang Z, Zheng R and Huang J 2021 Adv. Mater. 33 2005389
[34] Jakhar A, Kumar P, Moudgil A, Dhyani V and Das S 2020 Adv. Opt. Mater. 8 1901714
[35] Benjamin S L, de Groot C H, Hector A L, Huang R, Koukharenko E, Levason W and Reid G 2015 J. Mater. Chem. C 3 423
[36] Zeng Y, Wang J, Yang X, Yao J, Li P, He Q, Xu M and Miao X 2023 Opt. Mater. 136 113447
[37] Yao Z, Huang Y, Du W, He C, Zhu L, Zhang L and Xu X 2020 IEEE Trans. Terahertz Sci. Technol. 10 101
[38] Kosyachenko L A, Grushko E V and Mikityuk T I 2012 Semiconductors 46 466
[39] Nienhuys H K and Sundström V 2005 Appl. Phys. Lett. 87 012101
[40] Yan J Y 2017 J. Phys.:Condens. Matter 29 415302
[41] Fan Z, Geng Z, Lv X, Su Y, Yang Y, Liu J and Chen H 2017 Sci. Rep. 7 14828
[1] Optical study of magnetic topological insulator MnBi4Te7
Zhi-Yu Liao(廖知裕), Bing Shen(沈冰), Xiang-Gang Qiu(邱祥冈), and Bing Xu(许兵). Chin. Phys. B, 2024, 33(1): 017802.
[2] Integrated system of traditional THz time-domain spectroscopy and asynchronous optical sampling
Jing Ding(丁晶), Qing-Hao Meng(孟庆昊), Yan Shen(沈妍), Chen-Xin Ding(丁晨鑫), Bo Su(苏波), Hai-Lin Cui(崔海林), and Cun-Lin Zhang(张存林). Chin. Phys. B, 2023, 32(4): 048702.
[3] Terahertz spectroscopy and lattice vibrational analysis of pararealgar and orpiment
Ya-Wei Zhang(张亚伟), Guan-Hua Ren(任冠华), Xiao-Qiang Su(苏晓强), Tian-Hua Meng(孟田华), and Guo-Zhong Zhao(赵国忠). Chin. Phys. B, 2022, 31(10): 103302.
[4] Nonlinear photoncurrent in transition metal dichalcogenide with warping term under illuminating of light
Guo-Bao Zhu(朱国宝), Hui-Min Yang(杨慧敏, and Yun-Hai Zhang(张运海). Chin. Phys. B, 2021, 30(3): 037301.
[5] Negative photoconductivity in low-dimensional materials
Boyao Cui(崔博垚), Yanhui Xing(邢艳辉), Jun Han(韩军), Weiming Lv(吕伟明), Wenxing Lv(吕文星), Ting Lei(雷挺), Yao Zhang(张尧), Haixin Ma(马海鑫), Zhongming Zeng(曾中明), and Baoshun Zhang(张宝顺). Chin. Phys. B, 2021, 30(2): 028507.
[6] Suppression of persistent photoconductivity in high gain Ga2O3 Schottky photodetectors
Haitao Zhou(周海涛), Lujia Cong(丛璐佳), Jiangang Ma(马剑钢), Bingsheng Li(李炳生), Haiyang Xu(徐海洋), and Yichun Liu(刘益春). Chin. Phys. B, 2021, 30(12): 126104.
[7] Determination of potassium sorbate and sorbic acid in agricultural products using THz time-domain spectroscopy
Yuying Jiang(蒋玉英), Guangming Li(李广明), Ming Lv(吕明), Hongyi Ge(葛宏义), Yuan Zhang(张元). Chin. Phys. B, 2020, 29(9): 098705.
[8] Broadband terahertz time-domain spectroscopy and fast FMCW imaging: Principle and applications
Yao-Chun Shen(沈耀春), Xing-Yu Yang(杨星宇), Zi-Jian Zhang(张子健). Chin. Phys. B, 2020, 29(7): 078705.
[9] Ultraviolet irradiation dosimeter based on persistent photoconductivity effect of ZnO
Chao-Jun Wang(王朝骏), Xun Yang(杨珣), Jin-Hao Zang(臧金浩), Yan-Cheng Chen(陈彦成), Chao-Nan Lin(林超男), Zhong-Xia Liu(刘忠侠), Chong-Xin Shan(单崇新). Chin. Phys. B, 2020, 29(5): 058504.
[10] A systematic study of light dependency of persistent photoconductivity in a-InGaZnO thin-film transistors
Yalan Wang(王雅兰), Mingxiang Wang(王明湘), Dongli Zhang(张冬利), and Huaisheng Wang(王槐生). Chin. Phys. B, 2020, 29(11): 118101.
[11] Loss induced negative refraction and super-prism effect at highly absorptive interface
Jian Wu(吴坚), Tao Wang(王涛), Tianyue Hou(侯天悦), Xuefen Kan(阚雪芬), Cheng Yin(殷澄), Pu Zhou(周朴), Zhuangqi Cao(曹庄琪). Chin. Phys. B, 2019, 28(5): 054201.
[12] Competitive and synergistic adsorption of binary volatile organic compound mixtures on activated carbon
Jing Zhu(祝静), Hong-Lei Zhan(詹洪磊), Kun Zhao(赵昆), Xin-Yang Miao(苗昕扬), Qiong Zhou(周琼), Wen-Zheng Yue(岳文正). Chin. Phys. B, 2019, 28(2): 020204.
[13] Review of photoresponsive properties at SrTiO3-based heterointerfaces
Hong Yan(闫虹), Zhaoting Zhang(张兆亭), Shuanhu Wang(王拴虎), Kexin Jin(金克新). Chin. Phys. B, 2018, 27(11): 117804.
[14] Fabrication of crystalline selenium microwire
Shuai Peng(彭帅), Guo-Wu Tang(唐国武), Min Sun(孙敏), Wang-Wang Liu(刘旺旺), Xiu-Jie Shan(单秀杰), Qi Qian(钱奇), Dong-Dan Chen(陈东丹), Qin-Yuan Zhang(张勤远), Zhong-Min Yang(杨中民). Chin. Phys. B, 2017, 26(4): 048101.
[15] Terahertz-dependent identification of simulated hole shapes in oil—gas reservoirs
Ri-Ma Bao(宝日玛), Hong-Lei Zhan(詹洪磊), Xin-Yang Miao(苗昕扬), Kun Zhao(赵昆), Cheng-Jing Feng(冯程静), Chen Dong(董晨), Yi-Zhang Li(李羿璋), Li-Zhi Xiao(肖立志). Chin. Phys. B, 2016, 25(10): 100204.
No Suggested Reading articles found!