Special Issue:
SPECIAL TOPIC — Celebrating the 100th Anniversary of Physics Discipline of Northwest University
|
SPECIAL TOPIC—Celebrating the 100th Anniversary of Physics Discipline of Northwest University |
Prev
Next
|
|
|
Interfacial photoconductivity effect of type-I and type-II Sb2Se3/Si heterojunctions for THz wave modulation |
Xue-Qin Cao(曹雪芹), Yuan-Yuan Huang(黄媛媛)†, Ya-Yan Xi(席亚妍), Zhen Lei(雷珍), Jing Wang(王静), Hao-Nan Liu(刘昊楠), Ming-Jian Shi(史明坚), Tao-Tao Han(韩涛涛), Meng-En Zhang(张蒙恩), and Xin-Long Xu(徐新龙)‡ |
Shaanxi Joint Laboratory of Graphene, State Key Laboratory Incubation Base of Photoelectric Technology and Functional Materials, International Collaborative Center on Photoelectric Technology, and Nano Functional Materials, Institute of Photonics & Photon-Technology, Northwest University, Xi'an 710069, China |
|
|
Abstract An in-depth understanding of the photoconductivity and photocarrier density at the interface is of great significance for improving the performance of optoelectronic devices. However, extraction of the photoconductivity and photocarrier density at the heterojunction interface remains elusive. Herein, we have obtained the photoconductivity and photocarrier density of 173 nm Sb2Se3/Si (type-I heterojunction) and 90 nm Sb2Se3/Si (type-II heterojunction) utilizing terahertz (THz) time-domain spectroscopy (THz-TDS) and a theoretical Drude model. Since type-I heterojunctions accelerate carrier recombination and type-II heterojunctions accelerate carrier separation, the photoconductivity and photocarrier density of the type-II heterojunction (21.8× 104 S·m-1, 1.5× 1015 cm-3) are higher than those of the type-I heterojunction (11.8× 104 S·m-1, 0.8× 1015 cm-3). These results demonstrate that a type-II heterojunction is superior to a type-I heterojunction for THz wave modulation. This work highlights THz-TDS as an effective tool for studying photoconductivity and photocarrier density at the heterojunction interface. In turn, the intriguing interfacial photoconductivity effect provides a way to improve the THz wave modulation performance.
|
Received: 26 June 2023
Revised: 12 August 2023
Accepted manuscript online: 23 August 2023
|
PACS:
|
67.30.hp
|
(Interfaces)
|
|
68.35.Fx
|
(Diffusion; interface formation)
|
|
79.60.Jv
|
(Interfaces; heterostructures; nanostructures)
|
|
Fund: Project supported by the National Natural Science Foundation of China (Grant Nos. 12261141662, 12074311, and 12004310). |
Corresponding Authors:
Yuan-Yuan Huang, Xin-Long Xu
E-mail: yyhuang@nwu.edu.cn;xlxuphy@nwu.edu.cn
|
Cite this article:
Xue-Qin Cao(曹雪芹), Yuan-Yuan Huang(黄媛媛), Ya-Yan Xi(席亚妍), Zhen Lei(雷珍), Jing Wang(王静), Hao-Nan Liu(刘昊楠), Ming-Jian Shi(史明坚), Tao-Tao Han(韩涛涛), Meng-En Zhang(张蒙恩), and Xin-Long Xu(徐新龙) Interfacial photoconductivity effect of type-I and type-II Sb2Se3/Si heterojunctions for THz wave modulation 2023 Chin. Phys. B 32 116701
|
[1] Du W Y, Huang Y Y, Zhou Y X and Xu X L 2022 J. Phys. D:Appl. Phys. 55 223002 [2] Huang Y, Yao Z, He C, Zhu L, Zhang L, Bai J and Xu X 2019 J. Phys.:Condens. Matter 31 153001 [3] Zhong Y, Cai T, Low T, Chen H and Lin X 2022 Phys. Rev. B 106 035304 [4] Leng N, Ma L and Bai M 2022 Opt. Express 30 44095 [5] Cong X, Zheng Y, Huang F, You Q, Tang J, Fang F, Jiang K, Han C and Shi Y 2022 Nano Res. 15 8442 [6] Wang C, Ni H, Dai J, Liu T, Wu Z, Chen X, Dong Z, Qian J and Wu Z 2022 Chem. Phys. Lett. 803 139815 [7] Gasparotto A, Maccato C, Sada C, Carraro G, Kondarides D I, Bebelis S, Petala A, La Porta A, Altantzis T and Barreca D 2019 Adv. Sustainable Syst. 3 1900046 [8] Luo M, Song J, Wang J, Pan X, Hong H and Nötzel R 2022 AIP Advances 12 115112 [9] Yan D, Xu D, Li J, Wang Y, Liang F, Wang J, Yan C, Liu H, Shi J, Tang L, He Y, Zhong K, Lin Z, Zhang Y, Cheng H, Shi W, Yao J and Wu Y 2018 Opt. Mater. 78 484 [10] Guo H C, Zhang X H, Liu W, Yong A M and Tang S H 2009 J. Appl. Phys. 106 063104 [11] Ulbricht R, Hendry E, Shan J, Heinz T F and Bonn M 2011 Rev. Mod. Phys. 83 543 [12] Yue J, Ling F and Yao J 2020 Opt. Mater. Express 10 2919 [13] Jakhar A, Kumar P, Husain S, Dhyani V and Das S 2020 ACS Appl. Nano Mater. 3 10767 [14] Mamta, Singh Y, Maurya K K and Singh V N 2022 Materials Today Sustainability 18 100148 [15] Ghosh S, Moreira M V B, Fantini C and González J C 2020 Sol. Energy 211 613 [16] Han T, Luo M, Liu Y, Lu C, Ge Y, Xue X, Dong W, Huang Y, Zhou Y and Xu X 2022 J. Colloid Interface Sci. 628 886 [17] Basak A and Singh U P 2021 Sol. Energy Mater. Sol. Cells 230 111184 [18] Hobson T D C, Phillips L J, Hutter O S, Shiel H, Swallow J E N, Savory C N, Nayak P K, Mariotti S, Das B, Bowen L, Jones L A H, Featherstone T J, Smiles M J, Farnworth M A, Zoppi G, Thakur P K, Lee T-L, Snaith H J, Leighton C, Scanlon D O, Dhanak V R, Durose K, Veal T D and Major J D 2020 Chem. Mater. 32 2621 [19] Choi D, Jang Y, Lee J, Jeong G H, Whang D, Hwang S W, Cho K S and Kim S W 2014 Sci. Rep. 4 6714 [20] Liu H, Luo G, Cheng H, Yang Z, Xie Z, Zhang K H L and Yang Y 2022 J. Phys. Chem. Lett. 13 4988 [21] Ren D, Chen S, Cathelinaud M, Liang G, Ma H and Zhang X 2020 ACS Appl. Mater. Interfaces 12 30572 [22] Cheng C H, Li M, Song H Q, Li W H, Leng J, Tian W, Cui R, Zhao C, Jin S, Liu W and Cong S 2021 ACS Appl. Energ. Mater. 4 5079 [23] Wang K, Chen C, Liao H, Wang S, Tang J, Beard M C and Yang Y 2019 J. Phys. Chem. Lett. 10 4881 [24] Yu L, Wang B, Han H, Dai C, Liu W and Wang Y 2022 J. Lumin. 244 118704 [25] Li G, Li Z, Chen J, Chen X, Qiao S, Wang S, Xu Y and Mai Y 2018 J. Alloys Compd. 737 67 [26] Jakhar A, Kumar P, Husain S, Dhyani V, Chouksey A, Rai P K, Rawat J S and Das S 2021 Nano Express 2 040004 [27] Zheng W, Fan F, Chen M, Chen S and Chang S J 2016 AIP Advances 6 075105 [28] Chen S, Fan F, Miao Y, He X, Zhang K and Chang S 2016 Nanoscale 8 4713 [29] Grad L, von Rohr F, Zhao J, Hengsberger M and Osterwalder J 2020 Phys. Rev. Mater. 4 105404 [30] Du W Y, Yao Z H, Zhu L P, Huang Y Y, Lei Z, Xi F G, Jin Y P and Xu X L 2020 Appl. Phys. Lett. 117 081106 [31] Zhang X C and Auston D H 1992 J. Appl. Phys. 71 326 [32] Moez A A and Ali A I 2021 Journal of Materials Science:Materials in Electronics 32 1303 [33] Tang R, Zhou S, Zhang Z, Zheng R and Huang J 2021 Adv. Mater. 33 2005389 [34] Jakhar A, Kumar P, Moudgil A, Dhyani V and Das S 2020 Adv. Opt. Mater. 8 1901714 [35] Benjamin S L, de Groot C H, Hector A L, Huang R, Koukharenko E, Levason W and Reid G 2015 J. Mater. Chem. C 3 423 [36] Zeng Y, Wang J, Yang X, Yao J, Li P, He Q, Xu M and Miao X 2023 Opt. Mater. 136 113447 [37] Yao Z, Huang Y, Du W, He C, Zhu L, Zhang L and Xu X 2020 IEEE Trans. Terahertz Sci. Technol. 10 101 [38] Kosyachenko L A, Grushko E V and Mikityuk T I 2012 Semiconductors 46 466 [39] Nienhuys H K and Sundström V 2005 Appl. Phys. Lett. 87 012101 [40] Yan J Y 2017 J. Phys.:Condens. Matter 29 415302 [41] Fan Z, Geng Z, Lv X, Su Y, Yang Y, Liu J and Chen H 2017 Sci. Rep. 7 14828 |
No Suggested Reading articles found! |
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
Altmetric
|
blogs
Facebook pages
Wikipedia page
Google+ users
|
Online attention
Altmetric calculates a score based on the online attention an article receives. Each coloured thread in the circle represents a different type of online attention. The number in the centre is the Altmetric score. Social media and mainstream news media are the main sources that calculate the score. Reference managers such as Mendeley are also tracked but do not contribute to the score. Older articles often score higher because they have had more time to get noticed. To account for this, Altmetric has included the context data for other articles of a similar age.
View more on Altmetrics
|
|
|