Special Issue:
SPECIAL TOPIC — Celebrating the 100th Anniversary of Physics Discipline of Northwest University
|
SPECIAL TOPIC—Celebrating the 100th Anniversary of Physics Discipline of Northwest University |
Prev
Next
|
|
|
Structural, electronic and magnetic properties of Fe-doped strontium ruthenates |
Nan Liu(刘楠)1, Xiao-Chao Wang(王晓超)1, and Liang Si(司良)1,2,† |
1 School of Physics, Northwest University, Xi'an 710127, China; 2 Institute of Solid State Physics, TU Wien, Vienna 1040, Austria |
|
|
Abstract By employing a combined approach of density-functional theory (DFT) and dynamical mean-field theory (DMFT) calculations, we examine the structural, electronic, and magnetic characteristics of two distinct strontium ruthenates: Sr2RuO4, an unconventional superconductor, and the correlated metal SrRuO3, both at 50% Fe-doping level. In both Sr2Fe0.5Ru0.5O4 and SrFe0.5Ru0.5O3, the original ruthenium (Ru) and the dopant iron (Fe) atoms adopt 3-dimensional and 2-dimensional G-type structures, respectively. The hybridization between Fe-3d and Ru-4d is comparatively weaker than in other double perovskite systems. The interplay between strong correlations and reduced itinerancy results in significant spin splitting at Fe and Ru sites. Consequently, a charge transfer process, along with the super-exchange effect, leads to antiferromagnetically coupled Fe3+ and Ru5+ ions and establishes a semiconducting ferrimagnetic order. Subsequent DMFT calculations demonstrate the persistence of the ferrimagnetic order even at room temperature (300 K). These findings align with prior reports on SrFe0.5Ru0.5O3, thus reinforcing the notion that 3d-4d transition metal oxides hold considerable promise as candidates for high-performance spintronic devices, such as spin-valve sensors and spintronic giant magnetoresistance devices.
|
Received: 19 September 2023
Revised: 07 October 2023
Accepted manuscript online: 07 October 2023
|
PACS:
|
71.15.Mb
|
(Density functional theory, local density approximation, gradient and other corrections)
|
|
71.27.+a
|
(Strongly correlated electron systems; heavy fermions)
|
|
74.25.Ha
|
(Magnetic properties including vortex structures and related phenomena)
|
|
75.50.Gg
|
(Ferrimagnetics)
|
|
Fund: Project supported by the starting funds from Northwest University. We thank Paul Worm and Karsten Held for fruitful discussion and support of computational resources. Calculations have been mainly done on the Vienna Scientific Clusters (VSC) and supercomputer at the School of Physics of Northwest University. |
Corresponding Authors:
Liang Si
E-mail: siliang@nwu.edu.cn
|
Cite this article:
Nan Liu(刘楠), Xiao-Chao Wang(王晓超), and Liang Si(司良) Structural, electronic and magnetic properties of Fe-doped strontium ruthenates 2023 Chin. Phys. B 32 117101
|
[1] Green M A, Ho-Baillie A and Snaith H J 2014 Nat. Photonics 8 506 [2] Hwang J, Rao R R, Giordano L, Katayama Y, Yu Y and Shao-Horn Y 2017 Science 358 751 [3] Anderson P W, Baskaran G, Zou Z and Hsu T 1987 Phys. Rev. Lett. 58 2790 [4] Mulder A T, Benedek N A, Rondinelli J M and Fennie C J 2013 Adv. Funct. Mater. 23 4810 [5] Birol T, Benedek N A and Fennie C J 2011 Phys. Rev. Lett. 107 257602 [6] Kim B J, Ohsumi H, Komesu T, Sakai S, Morita T, Takagi H and Arima T H 2009 Science 323 1329 [7] Kim B J, Jin H, Moon S J, Kim J Y, Park B G, Leem C S, Yu J, Noh T W, Kim C, Oh S J, Park J H, Durairaj V, Cao G and Rotenberg E 2008 Phys. Rev. Lett. 101 076402 [8] Koster G, Klein L, Siemons W, Rijnders G, Dodge J S, Eom C B, Blank D H A and Beasley M R 2012 Rev. Mod. Phys. 84 253 [9] Mackenzie A P and Maeno Y 2003 Rev. Mod. Phys. 75 657 [10] Fang Z, Nagaosa N, Takahashi K S, Asamitsu A, Mathieu R, Ogasawara T, Yamada H, Kawasaki M, Tokura Y and Terakura K 2003 Science 302 92 [11] Meng K Y, Ahmed A S, Bacani M, et al. 2019 Nano Lett. 19 3169 [12] Matsuno J, Ogawa N, Yasuda K, Kagawa F, Koshibae W, Nagaosa N, Tokura Y and Kawasaki M 2016 Sci. Adv. 2 e1600304 [13] Wang L, Feng Q, Kim Y, et al. 2018 Nat. Mater. 17 1087 [14] Lu J, Si L, Zhang Q, et al. 2021 Adv. Mater. 33 2102525 [15] Nelson K, Mao Z, Maeno Y and Liu Y 2004 Science 306 1151 [16] Kallin C 2012 Rep. Prog. Phys. 75 042501 [17] Ishida K, Mukuda H, Kitaoka Y, et al. 1998 Nature 396 658 [18] Luke G, Fudamoto Y, Kojima K, et al. 1998 Nature 394 558 [19] Rice T and Sigrist M 1995 J. Phys.:Condens. Mat. 7 L643 [20] Cao M, Liu T, Gao S, Sun G, Wu X, Hu C and Wang Z L 2005 Angew. Chem. 117 4269 [21] Stolen S, Gronvold F, Brinks H, Atake T and Mori H 1998 J. Chem. Thermodyn. 30 365 [22] Matsumoto G 1970 J. Phys. Soc. Jpn. 29 606 [23] Swarnkar A, Mir W J and Nag A 2018 ACS Energy Lett. 3 286 [24] Long Y, Hayashi N, Saito T, Azuma M, Muranaka S and Shimakawa Y 2009 Nature 458 60 [25] Kunkemöller S, Nugroho A A, Sidis Y and Braden M 2014 Phys. Rev. B 89 045119 [26] Braden M, Friedt O, Sidis Y, Bourges P, Minakata M and Maeno Y 2002 Phys. Rev. Lett. 88 197002 [27] Ortmann J, Liu J, Hu J, Zhu M, Peng J, Matsuda M, Ke X and Mao Z 2013 Sci. Rep. 3 [28] Zhu M, Shanavas K V, Wang Y, Zou T, Sun W F, Tian W, Garlea V O, Podlesnyak A, Matsuda M, Stone M B, Keavney D, Mao Z Q, Singh D J and Ke X 2017 Phys. Rev. B 95 054413 [29] Hicks C W, Brodsky D O, Yelland E A, et al. 2014 Science 344 283 [30] NishiZaki S, Maeno Y and Mao Z 2000 J. Phys. Soc. Jpn. 69 572 [31] Deguchi K, Mao Z Q, Yaguchi H and Maeno Y 2004 Phys. Rev. Lett. 92 047002 [32] Fan J, Liao S, Wang W, et al. 2011 J. Appl. Phys. 110 043907 [33] Bansal C, Kawanaka H, Takahashi R and Nishihara Y 2003 J. Alloys Compd. 360 47 [34] Kikugawa N, Mackenzie A P, Bergemann C, Borzi R A, Grigera S A and Maeno Y 2004 Phys. Rev. B 70 060508 [35] Kikugawa N, Bergemann C, Mackenzie A P and Maeno Y 2004 Phys. Rev. B 70 134520 [36] Qasim I, Blanchard P E, Liu S, Tang C, Kennedy B J, Avdeev M and Kimpton J A 2013 J. Solid State Chem. 206 242 [37] Shen K M, Kikugawa N, Bergemann C, Balicas L, Baumberger F, Meevasana W, Ingle N J C, Maeno Y, Shen Z X and Mackenzie A P 2007 Phys. Rev. Lett. 99 187001 [38] Zhong Z and Hansmann P 2017 Phys. Rev. X 7 011023 [39] Chen H and Millis A 2017 J. Phys.:Condens. Matter 29 243001 [40] Chang J, Lee K, Jung M H, Kwon J H, Kim M and Kim S K 2011 Chem. Mater. 23 2693 [41] Kresse G and Hafner J 1993 Phys. Rev. B 47 558 [42] Kresse G and Furthmü$ller J 1996 Comput. Mater. Sci. 6 15 [43] Blaha P, Schwarz K, Madsen G, Kvasnicka D and Luitz J 2001 An augmented plane wave+ local orbitals program for calculating crystal properties [44] Schwarz K, Blaha P and Madsen G K H 2002 Comput. Phys. Commun. 147 71 [45] Perdew J P, Ruzsinszky A, Csonka G I, Vydrov O A, Scuseria G E, Constantin L A, Zhou X and Burke K 2008 Phys. Rev. Lett. 100 136406 [46] Anisimov V I, Zaanen J and Andersen O K 1991 Phys. Rev. B 44 943 [47] Liechtenstein A I, Anisimov V I and Zaanen J 1995 Phys. Rev. B 52 R5467 [48] Miyake T and Aryasetiawan F 2008 Phys. Rev. B 77 085122 [49] Si L, Zhong Z, Tomczak J M and Held K 2015 Phys. Rev. B 92 041108 [50] Li Z, Iitaka T and Tohyama T 2012 Phys. Rev. B 86 094422 [51] Li Z, Laskowski R, Iitaka T and Tohyama T 2012 Phys. Rev. B 85 134419 [52] Wannier G H 1937 Phys. Rev. 52 191 [53] Marzari N, Mostofi A A, Yates J R, Souza I and Vanderbilt D 2012 Rev. Mod. Phys. 84 1419 [54] Mostofi A A, Yates J R, Lee Y S, Souza I, Vanderbilt D and Marzari N 2008 Comput. Phys. Commun. 178 685 [55] Kune J, Arita R, Wissgott P, Toschi A, Ikeda H and Held K 2010 Comput. Phys. Commun. 181 1888 [56] Gull E, Millis A J, Lichtenstein A I, Rubtsov A N, Troyer M and Werner P 2011 Rev. Mod. Phys. 83 34910 [57] Parragh N, Toschi A, Held K and Sangiovanni G 2012 Phys. Rev. B 86 155158 [58] Wallerberger M, Hausoel A, Gunacker P, Kowalski A, Parragh N, Goth F, Held K and Sangiovanni G 2019 Comput. Phys. Commun. 235 388 [59] Kaufmann J and Held K 2023 Comput. Phys. Commun. 282 108519 [60] Gubernatis J E, Jarrell M, Silver R N and Sivia D S 1991 Phys. Rev. B 44 6011 [61] Sandvik A W 1998 Phys. Rev. B 57 10287 [62] Halder A, Sanyal P and Saha-Dasgupta T 2019 Phys. Rev. B 99 020402 [63] Nowik I and Felner I 2004 Hyperfine Interact. 156 195 [64] Battle P, Gibb T, Jones C and Studer F 1989 J. Solid State Chem. 78 281 [65] Stokes H T and Hatch D M 2005 J. Appl. Crystallogr. 38 237 [66] Zhu M, Wang Y, Li P G, Ge J J, Tian W, Keavney D, Mao Z Q and Ke X 2017 Phys. Rev. B 95 174430 [67] Sarma D D, Mahadevan P, Saha-Dasgupta T, Ray S and Kumar A 2000 Phys. Rev. Lett. 85 2549 [68] Sanyal P, Halder A, Si L, Wallerberger M, Held K and Saha-Dasgupta T 2016 Phys. Rev. B 94 035132 [69] Pan H, Yi J B, Shen L, Wu R Q, Yang J H, Lin J Y, Feng Y P, Ding J, Van L H and Yin J H 2007 Phys. Rev. Lett. 99 127201 [70] Wang X, Song Y, Tao L L, Feng J F, Sui Y, Tang J, Song B, Wang Y, Wang Y, Zhang Y and Han X F 2014 Appl. Phys. Lett. 105 262402 [71] Hua E, Si L, Dai K, Wang Q, Ye H, Liu K, Zhang J, Lu J, Chen K, Jin F, Wang L and Wu W 2014 Adv. Mater. 34 2270327 |
No Suggested Reading articles found! |
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
Altmetric
|
blogs
Facebook pages
Wikipedia page
Google+ users
|
Online attention
Altmetric calculates a score based on the online attention an article receives. Each coloured thread in the circle represents a different type of online attention. The number in the centre is the Altmetric score. Social media and mainstream news media are the main sources that calculate the score. Reference managers such as Mendeley are also tracked but do not contribute to the score. Older articles often score higher because they have had more time to get noticed. To account for this, Altmetric has included the context data for other articles of a similar age.
View more on Altmetrics
|
|
|