|
|
Numerical study of a quantum spin in an s-wave superconductor using the natural orbitals renormalization group method
Wen-Jing Zhang(张文静), Ru Zheng(郑汝), Rong-Qiang He(贺荣强), and Zhong-Yi Lu(卢仲毅)
Chin. Phys. B, 2026, 35 (2):
027104.
DOI: 10.1088/1674-1056/adf4af
In a superconductor embedded with a quantum magnetic impurity, the Kondo effect is involved, leading to the competition between the Kondo singlet phase and the superconductivity phase. By means of the natural orbitals renormalization group (NORG) method, we revisit the problem of a quantum magnetic impurity coupled with a conventional s-wave superconductor. Here we present a detailed study focusing on the impurity spin polarization and susceptibility, the Kondo screening cloud, as well as the number and structures of the active natural orbitals (ANOs). In the superconducting phase, the impurity spin is partially polarized, indicating that the impurity remains partially screened by the quantum fluctuations. Furthermore, the impurity spin susceptibility becomes divergent, resulting from the presence of residual local moment formed at the impurity site. Correspondingly, a non-integral (incomplete) Kondo cloud is formed, although the ground state is a spin doublet in this phase. In comparison, the Kondo cloud is complete in the Kondo singlet phase as expected. We also quantify the critical point, where the quantum phase transition from a Kondo singlet phase to a superconducting phase occurs, which is consistent with that in previous works. On the other hand, it is illustrated that only one ANO emerges in both quantum phases. The structures of the ANO, projected into both the real space and momentum space, are distinct in the Kondo singlet phase from that in the superconducting phase. More specifically, in the Kondo singlet phase, the ANO keeps fully active with half-occupied, and the superconducting gap has negligible influence on its structure. On the contrary, in the superconducting phase, the ANO tends to be inactive and its structure changes significantly as the superconducting gap increases. Additionally, our investigation demonstrates that the NORG method is reliable and convenient to solve the quantum impurity problems in superconductors as well, which will promote further theoretical studies on the Kondo problems in such systems using numerical methods.
|