Please wait a minute...
Chin. Phys. B, 2026, Vol. 35(2): 024701    DOI: 10.1088/1674-1056/ae07ac
ELECTROMAGNETISM, OPTICS, ACOUSTICS, HEAT TRANSFER, CLASSICAL MECHANICS, AND FLUID DYNAMICS Prev   Next  

Cerebrospinal fluid as a therapeutic medium for magnetic nanoparticle transport in brain cancer hyperthermia

Essam T Abdelwahab1,2, Ahmed A Elsawy1, Abdallah A Henedy1,2, and Sara I Abdelsalam3,4,†
1 Basic Engineering Sciences Department, Faculty of Engineering, Menofia University, Shebin El-Kom, Egypt;
2 Faculty of Engineering, Menoufia National University, Menoufia, Egypt;
3 Basic Science, Faculty of Engineering, The British University in Egypt, Al-Shorouk City, Cairo 11837, Egypt;
4 Instituto de Ciencias Matemáticas ICMAT, CSIC, UAM, UCM, UC3M, Madrid 28049, Spain
Abstract  Neuronanomedicine is a promising interdisciplinary field combining two critical fields, neuroscience and nanotechnology. This study focuses on the engineering of magnetized nanoparticles (MNPs) in diagnosing and treating neurological disorders and brain cancer. Additionally, this mechanism enhances the effectiveness of magnetic-guided drug delivery. The alternating magnetic field is applied to control the directions of the MNPs to target the tumor cells. This study approaches the radiotherapy techniques of magnetic hyperthermia therapy (MHT), wherein the thermal radiative heat transfer effect is applied to achieve homogenous heating to destroy cancer cells. MNPs are injected through the cerebrospinal fluid (CSF) transport in the glymphatic system. The elastic properties of the cerebral arteries cause peristaltic propulsion for the resulting nanofluid. Therefore, the effective Maxwell model for the nanofluid thermal conductivity is selected. The nanofluid governing equations are solved using the perturbation technique under small wavelength number and long wavelength approximation with small Reynolds number. Additionally, the effects of thermal slip and elastic properties boundary conditions are incorporated. The graphical results for the streamwise velocity, pressure, and temperature distributions are plotted using MATLAB package considering the different effects of the magnetic flux intensity, thermal radiation parameter, thermal slipping at boundaries, elastic wall properties, and nanoparticle concentration. The results demonstrate the strong impact of the magnetic field and radiation heating in terms of enhancing the nanofluid CSF flow behavior and destroying cancer.
Keywords:  peristaltic flow      thermal radiation      magnetic field      nanofluid      perturbation technique  
Received:  04 April 2025      Revised:  06 June 2025      Accepted manuscript online:  17 September 2025
PACS:  47.11.-j (Computational methods in fluid dynamics)  
  47.10.-g (General theory in fluid dynamics)  
  47.50.-d (Non-Newtonian fluid flows)  
  67.30.ef (Thermodynamics)  
Fund: Sara Abdelsalam expresses her deep gratitude to Fundación Mujeres por África for supporting this work through the fellowship awarded to her.

Cite this article: 

Essam T Abdelwahab, Ahmed A Elsawy, Abdallah A Henedy, and Sara I Abdelsalam Cerebrospinal fluid as a therapeutic medium for magnetic nanoparticle transport in brain cancer hyperthermia 2026 Chin. Phys. B 35 024701

[1] Davis M E 2016 Clin. J. Oncol. Nurs. 20 S2
[2] Kumar A, Ahlawat W, Kumar R and Dilbaghi N 2017 Adv. Funct. Mater. 27 1700489
[3] Silva G A 2006 Nat. Rev. Neurosci. 7 65
[4] Palaniyappan R, Kumar P M, Tamilarasan R and Suresh S 2024 Indian J. Pharm. Educ. Res. 58 S1185
[5] Gayathri R Advancements in the Controlled Delivery of Nanodrugs to the Central Nervous System: Challenges and Innovations (in press)
[6] Shabani L, Abbasi M, Azarnew Z, Amani A M and Vaez A 2023 Biomed. Eng. Online 22 1
[7] Joshi R, Kumar P M, Tamilarasan R and Suresh S 2023 J. Drug Deliv. Sci. Technol. 105067
[8] Abdelsalam S I, Abdelwahab E T, Eldesoky I, Abumandour R M and Ahmed M 2025 Acta Mech. Sin. 41 724077
[9] Abumandour R M, Eldesoky I M, Abdelwahab E T and Ahmed M M 2024 Z. Angew. Math. Mech. 104 e202300260
[10] Choi S U and Eastman J A 1995 Enhancing Thermal Conductivity of Fluids with Nanoparticles (Argonne National Laboratory)
[11] Kumar P M, Kumar J, Tamilarasan R, Sendhilnathan S and Suresh S 2015 Eng. J. 19 67
[12] Dreaden E C, MackeyMA, Huang X, Kang B and El-SayedMA 2011 Chem. Soc. Rev. 40 3391
[13] Dreaden E C, Austin L A, Mackey M A and El-Sayed M A 2012 Ther. Deliv. 3 457
[14] Mekheimer K S, Hasona W, Abo-Elkhair R and Zaher A 2018 Phys. Lett. A 382 85
[15] Abdelsalam S I and Bhatti M 2019 Sci. Rep. 9 260
[16] Zhu W, Li Y, Zhang L and Wang J 2024 Crit. Rev. Oncol. Hematol. 104541
[17] Bastiancich C, Da Silva A and Estéve M A 2021 Front. Oncol. 10 610356
[18] Skandalakis G P, Rivera D R, Rizea C D and Bouras A 2020 Int. J. Hyperthermia 37 3
[19] Abdelsalam S I, Magesh A, Tamizharasi P and Zaher A 2024 Int. J. Numer. Methods Heat Fluid Flow 34 408
[20] Tharwat E, Magdy M, Eldesoky I M and Abumandour R M 2023 Eng. Res. J. 46 555
[21] Magdy M, Abumandour R, Eldesoky I and Alotaibi H 2024Mathematics 12 2024
[22] Nuwairan M A and Souayeh B 2022 Micromachines 13 374
[23] Alqarni A J, Abo-Elkhair R, Elsaid E M, Abdel-Aty A H and Abdel- Wahed M S 2023 Eur. Phys. J. Plus 138
[24] HasonaW, Almalki N, ElShekhipy A and IbrahimM2019 Heat Transf. Asian Res. 48 938
[25] Ramki R and Lakshminarayana P 2024 Mod. Phys. Lett. B 2550043
[26] Venugopal Reddy K, Makinde O D and Gnaneswara Reddy M 2018 Indian J. Phys. 92 1439
[27] Maier-Hauff K, Rothe R, Scholz R, Gneveckow U and Wust P 2011 J. Neurooncol. 103 317
[28] van Landeghem F K, Maier-Hauff K, Jordan A and Hoffmann K T 2009 Biomaterials 30 52
[29] Laurent S, Forge D, Port M, Roch A and Vander Elst L 2008 Chem. Rev. 108 2064
[30] Hayat T, Tanveer A, Yasmin H and Alsaedi A 2014 Appl. Bionics Biomech. 11 221
[31] Shaaban A A and Abou-Zeid M Y 2013 Math. Probl. Eng. 2013 819683
[32] Srivastava V and Saxena M 1995 Rheol. Acta 34 406
[33] Dimitropoulos C D, Edwards B J, Chae K S and Beris A N 1998 J. Comput. Phys. 144 517
[34] Eytan O, Jaffa A J and Elad D 2001 Med. Eng. Phys. 23 475
[35] Eldesoky I, Abumandour R, Kamel M and Abdelwahab E 2021 Int. J. Appl. Comput. Math. 7
[36] Eldesoky I M, Abumandour R M and Abdelwahab E T 2019 Z. Naturforsch. A 74 317
[37] Eldesoky I, Abumandour R, Kamel M and Abdelwahab E 2019 SN Appl. Sci. 1 1
[38] Lakshmi R and Kavitha A 2024 Int. J. Mod. Phys. B 38 2450212
[39] Abumandour R M, Eldesoky I M and Abdelwahab E T 2020 Eng. Res. J. 43 231
[40] Zhang T T, Li W, Meng G, Wang P and Liao W 2016 Biomater. Sci. 4 219
[41] Meng Q, Wang Y, Chen Y and Li W 2022 J. Mater. Chem. B 10 271
[42] Romanó F, Suresh V, Galie P A and Grotberg J B 2020 Sci. Rep. 10 21065
[43] Oraki Kohshour M, Papiol S, Delalle I, Rossner M J and Schulze T G 2023 Eur. Arch. Psychiatry Clin. Neurosci. 273 1279
[44] Thomas J H 2019 J. R. Soc. Interface 16 20190572
[45] Sweetman B and Linninger A A 2011 Ann. Biomed. Eng. 39 484
[46] Kelley D H 2021 Phys. Rev. Fluids 6 070501
[47] Bloomfield I, Johnston I and Bilston L 1998 Pediatr. Neurosurg. 28 246
[48] Abbas Z, Rafiq M, Alshomrani A and UllahM2021 Case Stud. Therm. Eng. 23 100817
[49] Akbar N S and Butt A W 2016 Appl. Nanosci. 6 379
[50] Yu W and Choi S U S 2003 J. Nanopart. Res. 5 167
[51] Hussain A, Malik M Y, Salahuddin T and Rubab A 2022 Appl. Sci. 12 1601
[52] Wang P and Olbricht W L 2011 J. Theor. Biol. 274 52
[53] Adnan and Ashraf W 2022 Adv. Mech. Eng. 14 16878132221106577
[1] Doping dependence of resistivity, upper critical field and its anisotropy in overdoped Ba1-xKxFe2As2 (x = 0.6-1) single crystals
Ke Shi(史可), Wenshan Hong(洪文山), Yang Li(李阳), Minjie Zhang(张敏杰), Yongqi Han(韩永琦), Yu Zhao(赵宇), Jiating Wu(吴嘉挺), Ze Wang(王泽), Langsheng Ling(凌浪生), Chuanying Xi(郗传英), Li Pi(皮雳), Huiqian Luo(罗会仟), and Zhaosheng Wang(王钊胜). Chin. Phys. B, 2026, 35(1): 017401.
[2] Bio-convective flow of gyrotactic microorganisms in nanofluid through a curved oscillatory channel with Cattaneo-Christov double diffusion theory
Imran M, Naveed M, Rafiq M Y, and Abbas Z. Chin. Phys. B, 2026, 35(1): 014401.
[3] Cattaneo-Christov heat transfer model for tangent hyperbolic fluid with Thompson-Torian slip and melting effects
Anwar Saeed and Afrah Al-Bossly. Chin. Phys. B, 2025, 34(9): 094404.
[4] High-sensitivity spectroscopic measurements under pulsed high magnetic field
Zheng Wang(王政), Yichun Pan(潘议淳), Guangran Yang(杨光冉), Wei Xie(谢微), and Weihang Zhou(周伟航). Chin. Phys. B, 2025, 34(7): 070701.
[5] Orbital magnetic field effect on spin waves in a triangular lattice tetrahedral antiferromagnetic insulator
Pi-Ye Zhou(周丕烨), Xiao-Hui Li(李晓慧), and Yuan Wan(万源). Chin. Phys. B, 2025, 34(6): 067501.
[6] Thermal investigation of water-based radiative magnetized micropolar hybrid nanofluid flow subject to impacts of the Cattaneo-Christov flux model on a variable porous stretching sheet with a machine learning approach
Showkat Ahmad Lone, Zehba Raizah, Rawan Bossly, Fuad S. Alduais, Afrah Al-Bossly, and Arshad Khan. Chin. Phys. B, 2025, 34(6): 064401.
[7] Performance analysis of porous solar absorbers with high-temperature radiation cooling function
Haiyan Yu(于海燕), Anqi Chen(陈安琪), Mingdong Li(李明东), Ahali Hailati(阿哈里·海拉提), Xiaohu Wu(吴小虎), and Xiaohan Ren(任霄汉). Chin. Phys. B, 2025, 34(6): 068102.
[8] Experimental study on the regulation of radiative heat flux by coating SiC film
Haifeng Xia(閤海峰) and Huihui Sun(孙慧慧). Chin. Phys. B, 2025, 34(5): 054402.
[9] Neural network analysis for prediction of heat transfer of aqueous hybrid nanofluid flow in a variable porous space with varying film thickness over a stretched surface
Abeer S Alnahdi and Taza Gul. Chin. Phys. B, 2025, 34(2): 024701.
[10] Instability of nanofluid film flow under external electric field: Linear and weakly nonlinear analysis
Xinshan Li(李欣珊), Danting Xue(薛丹婷), Ruigang Zhang(张瑞岗), Quansheng Liu(刘全生), and Zhaodong Ding(丁兆东). Chin. Phys. B, 2025, 34(12): 124701.
[11] Finite element analysis of copper nanoparticles in Boger fluid: Effects of dynamic inter-particle spacing, nanolayer thermal conductivity, nanoparticles diameter, and thermal radiation over a stretching sheet
Qadeer Raza, Xiaodong Wang(王晓东), Tahir Mushtaq, Bagh Ali, and Nehad Ali Shah. Chin. Phys. B, 2025, 34(11): 114402.
[12] Stability and characteristic modes of skyrmions in magnetic nanotubes
Tijjani Abdulrazak, Qizhi Cai(蔡淇智), and Guangwei Deng(邓光伟). Chin. Phys. B, 2025, 34(10): 107512.
[13] Magnetic-field-induced photoluminescence enhancement in type-I quantum wells: A quantitative probe for interface flatness
Jun Shao(邵军), Man Wang(王嫚), Xiren Chen(陈熙仁), Liangqing Zhu(朱亮清), F. X. Zha(查访星), H. Zhao, Shumin Wang(王庶民), and Wei Lu(陆卫). Chin. Phys. B, 2025, 34(10): 107802.
[14] Intensity enhancement of Raman active and forbidden modes induced by naturally occurred hot spot at GaAs edge
Tao Liu(刘涛), Miao-Ling Lin(林妙玲), Da Meng(孟达), Xin Cong(从鑫), Qiang Kan(阚强), Jiang-Bin Wu(吴江滨), and Ping-Heng Tan(谭平恒). Chin. Phys. B, 2025, 34(1): 017801.
[15] Blood-based magnetohydrodynamic Casson hybrid nanofluid flow on convectively heated bi-directional porous stretching sheet with variable porosity and slip constraints
Showkat Ahmad Lone, Rawan Bossly, Fuad S. Alduais, Afrah Al-Bossly, Arshad Khan, and Anwar Saeed. Chin. Phys. B, 2025, 34(1): 014101.
No Suggested Reading articles found!