| CONDENSED MATTER: ELECTRONIC STRUCTURE, ELECTRICAL, MAGNETIC, AND OPTICAL PROPERTIES |
Prev
Next
|
|
|
Numerical study of a quantum spin in an s-wave superconductor using the natural orbitals renormalization group method |
| Wen-Jing Zhang(张文静)1, Ru Zheng(郑汝)1,†, Rong-Qiang He(贺荣强)2,3, and Zhong-Yi Lu(卢仲毅)2,3,4,‡ |
1 School of Physical Science and Technology, Ningbo University, Ningbo 315211, China; 2 School of Physics and Beijing Key Laboratory of Opto-electronic Functional Materials & Micro-nano Devices, Renmin University of China (RUC), Beijing 100872, China; 3 Key Laboratory of Quantum State Construction and Manipulation (Ministry of Education), Renmin University of China, Beijing 100872, China; 4 Hefei National Laboratory, Hefei 230088, China |
|
|
|
|
Abstract In a superconductor embedded with a quantum magnetic impurity, the Kondo effect is involved, leading to the competition between the Kondo singlet phase and the superconductivity phase. By means of the natural orbitals renormalization group (NORG) method, we revisit the problem of a quantum magnetic impurity coupled with a conventional s-wave superconductor. Here we present a detailed study focusing on the impurity spin polarization and susceptibility, the Kondo screening cloud, as well as the number and structures of the active natural orbitals (ANOs). In the superconducting phase, the impurity spin is partially polarized, indicating that the impurity remains partially screened by the quantum fluctuations. Furthermore, the impurity spin susceptibility becomes divergent, resulting from the presence of residual local moment formed at the impurity site. Correspondingly, a non-integral (incomplete) Kondo cloud is formed, although the ground state is a spin doublet in this phase. In comparison, the Kondo cloud is complete in the Kondo singlet phase as expected. We also quantify the critical point, where the quantum phase transition from a Kondo singlet phase to a superconducting phase occurs, which is consistent with that in previous works. On the other hand, it is illustrated that only one ANO emerges in both quantum phases. The structures of the ANO, projected into both the real space and momentum space, are distinct in the Kondo singlet phase from that in the superconducting phase. More specifically, in the Kondo singlet phase, the ANO keeps fully active with half-occupied, and the superconducting gap has negligible influence on its structure. On the contrary, in the superconducting phase, the ANO tends to be inactive and its structure changes significantly as the superconducting gap increases. Additionally, our investigation demonstrates that the NORG method is reliable and convenient to solve the quantum impurity problems in superconductors as well, which will promote further theoretical studies on the Kondo problems in such systems using numerical methods.
|
Received: 06 June 2025
Revised: 25 July 2025
Accepted manuscript online: 28 July 2025
|
|
PACS:
|
71.10.-w
|
(Theories and models of many-electron systems)
|
| |
71.10.Fd
|
(Lattice fermion models (Hubbard model, etc.))
|
| |
71.27.+a
|
(Strongly correlated electron systems; heavy fermions)
|
|
| Fund: Project supported by the National Natural Science Foundation of China (Grant Nos. 12104247 and 11934020). |
Cite this article:
Wen-Jing Zhang(张文静), Ru Zheng(郑汝), Rong-Qiang He(贺荣强), and Zhong-Yi Lu(卢仲毅) Numerical study of a quantum spin in an s-wave superconductor using the natural orbitals renormalization group method 2026 Chin. Phys. B 35 027104
|
[1] Kondo J 1964 Prog. Theor. Phys. 32 37 [2] Hewson A C 1997 The Kondo Problem to Heavy Fermions (Cambridge: Cambridge University Press) [3] Sørensen E S and Affleck I 1996 Phys. Rev. B 53 9153 [4] Affleck I and Simon P 2001 Phys. Rev. Lett. 86 2854 [5] Sørensen E S and Affleck I 2005 Phys. Rev. Lett. 94 086601 [6] Bergmann G 2008 Phys. Rev. B 77 104401 [7] Holzner A, McCulloch I P, Schollwock U, von Delft J and Heidrich- Meisner F 2009 Phys. Rev. B 80 205114 [8] Busser C A, Martins G B, Costa Ribeiro L, Vernek E, Anda E V and Dagotto E 2010 Phys. Rev. B 81 045111 [9] Gubernatis J E, Hirsch J E and Scalapino D J 1987 Phys. Rev. B 35 8478 [10] Barzykin V and Affleck I 1996 Phys. Rev. Lett. 76 4959 [11] Simon P and Affleck I 2002 Phys. Rev. Lett. 89 206602 [12] Simon P and Affleck I 2003 Phys. Rev. B 68 115304 [13] Hand T, Kroha J and Monien H 2006 Phys. Rev. Lett. 97 136604 [14] Borda L 2007 Phys. Rev. B 75 041307 [15] Affleck I, Borda L and Saleur H 2008 Phys. Rev. B 77 180404 [16] Pereira R G, Laflorencie N, Affleck I and Halperin B I 2008 Phys. Rev. B 77 125327 [17] Mitchell A K, Becker M and Bulla R 2011 Phys. Rev. B 84 115120 [18] Yoshii R and Eto M 2011 Phys. Rev. B 83 165310 [19] Park J, Lee S S B, Oreg Y and Sim H S 2013 Phys. Rev. Lett. 110 246603 [20] Busser C A, Martins G B and Feiguin A E 2013 Phys. Rev. B 88 245113 [21] Shirakawa T and Yunoki S 2014 Phys. Rev. B 90 195109 [22] Shirakawa T and Yunoki S 2016 Phys. Rev. B 93 205124 [23] Boyce J B and Slichter C P 1974 Phys. Rev. Lett. 32 61 [24] Boyce J B and Slichter C P 1976 Phys. Rev. B 13 379 [25] Madhavan V, Chen W, Jamneala T, Crommie M F and Wingreen N S 1998 Science 280 567 [26] Manoharan H C, Lutz C P and Eigler D M 2000 Nature 403 512 [27] Fu Y S, Ji S H, Chen X, Ma X C, Wu R, Wang C C, Duan W H, Qiu X H, Sun B, Zhang P, Jia J F and Xue Q K 2007 Phys. Rev. Lett. 99 256601 [28] Pruser H, Wenderoth M, Dargel P E, Weismann A, Peters R, Pruschke T and Ulbrich R G 2011 Nat. Phys. 7 203 [29] Borzenets I V, Shim J, Chen J C H, Ludwig A, Wieck A D, Tarucha S, Sim H S and Yamamoto M 2020 Nature 579 210 [30] YU L 1965 Acta Phys. Sin. 21 75 (in Chinese) [31] Soda T, Matsuura T and Nagaoka Y 1967 Prog. Theor. Phys. 38 551 [32] Shiba H 1968 Prog. Theor. Phys. 40 435 [33] Rusinov A I 1969 Soviet J. Exp. Theor. Phys. Lett. 9 85 [34] Sakurai A 1970 Prog. Theor. Phys. 44 1472 [35] Muller-Hartmann E and Zittartz J 1971 Phys. Rev. Lett. 26 428 [36] Matsuura T 1977 Prog. Theor. Phys. 57 1823 [37] Satori K, Shiba H, Sakai O and Shimizu Y 1992 J. Phys. Soc. Jpn. 61 3239 [38] Sakai O, Shimizu Y, Shiba H and Satori K 1993 J. Phys. Soc. Jpn. 62 3181 [39] Yazdani A, Jones B A, Lutz C P, Crommie M F and Eigler D M 1997 Science 275 1767 [40] Balatsky A V, Vekhter I and Zhu J X 2006 Rev. Mod. Phys. 78 373 [41] Bauer J, Oguri A and Hewson A C 2007 J. Phys.: Condens. Matter 19 486211 [42] Karrasch C, Oguri A and Meden V 2008 Phys. Rev. B 77 024517 [43] Ji S H, Zhang T, Fu Y S, Chen X, Ma X C, Li J, Duan W H, Jia J F and Xue Q K 2008 Phys. Rev. Lett. 100 226801 [44] Luitz D J and Assaad F F 2010 Phys. Rev. B 81 024509 [45] Franke K J, Schulze G and Pascual J I 2011 Science 332 940 [46] Sau J D and Demler E 2013 Phys. Rev. B 88 205402 [47] Yao N Y, Glazman L I, Demler E A, Lukin M D and Sau J D 2014 Phys. Rev. Lett. 113 087202 [48] Yao N Y, Moca C P, Weymann I, Sau J D, Lukin M D, Demler E A and Zarand G 2014 Phys. Rev. B 90 241108 [49] Zitko R, Lim J S, L øpez R and Aguado R 2015 Phys. Rev. B 91 045441 [50] Hatter N, Heinrich B W, Ruby M, Pascual J I and Franke K J 2015 Nat. Commun. 6 8988 [51] Lee E J H, Jiang X, Zitko R, Aguado R, Lieber C M and De Franceschi S 2017 Phys. Rev. B 95 180502 [52] Zazunov A, Plugge S and Egger R 2018 Phys. Rev. Lett. 121 207701 [53] Li L, Gao M X, Wang Z H, Luo H G and Chen W Q 2018 Phys. Rev. B 97 064519 [54] Akkaravarawong K, Vayrynen J I, Sau J D, Demler E A, Glazman L I and Yao N Y 2019 Phys. Rev. Res. 1 033091 [55] Moca C P, Weymann I, Werner M A and Zarand G 2021 Phys. Rev. Lett. 127 186804 [56] Mishra A, Simon P, Hyart T and Trif M 2021 PRX Quantum 2 040347 [57] Pasnoori P R, Andrei N, Rylands C and Azaria P 2022 Phys. Rev. B 105 174517 [58] Deacon R S, Tanaka Y, Oiwa A, Sakano R, Yoshida K, Shibata K, Hirakawa K and Tarucha S 2010 Phys. Rev. Lett. 104 076805 [59] Piquard C, Glidic P, Han C, Aassime A, Cavanna A, Gennser U, Meir Y, Sela E, Anthore A and Pierre F 2023 Nat. Commun. 14 7263 [60] He R Q and Lu Z Y 2014 Phys. Rev. B 89 085108 [61] He R Q, Dai J and Lu Z Y 2015 Phys. Rev. B 91 155140 [62] Zheng R, He R and Lu Z 2020 Sci. China Phys. Mech. Astron. 63 297411 [63] Zheng R, He R Q and Lu Z Y 2021 Phys. Rev. B 103 045111 [64] Zheng R, He R Q and Lu Z Y 2018 Chin. Phys. Lett. 35 067301 [65] Zheng R, He R Q and Lu Z Y 2021 Phys. Rev. B 104 235134 [66] Zheng R, He R Q and Lu Z Y 2023 Phys. Rev. B 107 115149 [67] Lowdin P O 1955 Phys. Rev. 97 1474 [68] Luo H G, Qin M P and Xiang T 2010 Phys. Rev. B 81 235129 [69] Zgid D, Gull E and Chan G K L 2012 Phys. Rev. B 86 165128 [70] Lin C and Demkov A A 2013 Phys. Rev. B 88 035123 [71] Lu Y, Hoppner M, Gunnarsson O and Haverkort M W 2014 Phys. Rev. B 90 085102 [72] Fishman M T and White S R 2015 Phys. Rev. B 92 075132 [73] Lu Y, Cao X, Hansmann P and Haverkort M W 2019 Phys. Rev. B 100 115134 [74] Kuhner T D and White S R 1999 Phys. Rev. B 60 335 [75] Jeckelmann E 2002 Phys. Rev. B 66 045114 [76] Andrei N, Furuya K and Lowenstein J H 1983 Rev. Mod. Phys. 55 331 |
| No Suggested Reading articles found! |
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
Altmetric
|
|
blogs
Facebook pages
Wikipedia page
Google+ users
|
Online attention
Altmetric calculates a score based on the online attention an article receives. Each coloured thread in the circle represents a different type of online attention. The number in the centre is the Altmetric score. Social media and mainstream news media are the main sources that calculate the score. Reference managers such as Mendeley are also tracked but do not contribute to the score. Older articles often score higher because they have had more time to get noticed. To account for this, Altmetric has included the context data for other articles of a similar age.
View more on Altmetrics
|
|
|