Please wait a minute...
Chin. Phys. B, 2026, Vol. 35(2): 027104    DOI: 10.1088/1674-1056/adf4af
CONDENSED MATTER: ELECTRONIC STRUCTURE, ELECTRICAL, MAGNETIC, AND OPTICAL PROPERTIES Prev   Next  

Numerical study of a quantum spin in an s-wave superconductor using the natural orbitals renormalization group method

Wen-Jing Zhang(张文静)1, Ru Zheng(郑汝)1,†, Rong-Qiang He(贺荣强)2,3, and Zhong-Yi Lu(卢仲毅)2,3,4,‡
1 School of Physical Science and Technology, Ningbo University, Ningbo 315211, China;
2 School of Physics and Beijing Key Laboratory of Opto-electronic Functional Materials & Micro-nano Devices, Renmin University of China (RUC), Beijing 100872, China;
3 Key Laboratory of Quantum State Construction and Manipulation (Ministry of Education), Renmin University of China, Beijing 100872, China;
4 Hefei National Laboratory, Hefei 230088, China
Abstract  In a superconductor embedded with a quantum magnetic impurity, the Kondo effect is involved, leading to the competition between the Kondo singlet phase and the superconductivity phase. By means of the natural orbitals renormalization group (NORG) method, we revisit the problem of a quantum magnetic impurity coupled with a conventional s-wave superconductor. Here we present a detailed study focusing on the impurity spin polarization and susceptibility, the Kondo screening cloud, as well as the number and structures of the active natural orbitals (ANOs). In the superconducting phase, the impurity spin is partially polarized, indicating that the impurity remains partially screened by the quantum fluctuations. Furthermore, the impurity spin susceptibility becomes divergent, resulting from the presence of residual local moment formed at the impurity site. Correspondingly, a non-integral (incomplete) Kondo cloud is formed, although the ground state is a spin doublet in this phase. In comparison, the Kondo cloud is complete in the Kondo singlet phase as expected. We also quantify the critical point, where the quantum phase transition from a Kondo singlet phase to a superconducting phase occurs, which is consistent with that in previous works. On the other hand, it is illustrated that only one ANO emerges in both quantum phases. The structures of the ANO, projected into both the real space and momentum space, are distinct in the Kondo singlet phase from that in the superconducting phase. More specifically, in the Kondo singlet phase, the ANO keeps fully active with half-occupied, and the superconducting gap has negligible influence on its structure. On the contrary, in the superconducting phase, the ANO tends to be inactive and its structure changes significantly as the superconducting gap increases. Additionally, our investigation demonstrates that the NORG method is reliable and convenient to solve the quantum impurity problems in superconductors as well, which will promote further theoretical studies on the Kondo problems in such systems using numerical methods.
Keywords:  Kondo effect      superconductor      natural orbitals renormalization group      active natural orbitals  
Received:  06 June 2025      Revised:  25 July 2025      Accepted manuscript online:  28 July 2025
PACS:  71.10.-w (Theories and models of many-electron systems)  
  71.10.Fd (Lattice fermion models (Hubbard model, etc.))  
  71.27.+a (Strongly correlated electron systems; heavy fermions)  
Fund: Project supported by the National Natural Science Foundation of China (Grant Nos. 12104247 and 11934020).

Cite this article: 

Wen-Jing Zhang(张文静), Ru Zheng(郑汝), Rong-Qiang He(贺荣强), and Zhong-Yi Lu(卢仲毅) Numerical study of a quantum spin in an s-wave superconductor using the natural orbitals renormalization group method 2026 Chin. Phys. B 35 027104

[1] Kondo J 1964 Prog. Theor. Phys. 32 37
[2] Hewson A C 1997 The Kondo Problem to Heavy Fermions (Cambridge: Cambridge University Press)
[3] Sørensen E S and Affleck I 1996 Phys. Rev. B 53 9153
[4] Affleck I and Simon P 2001 Phys. Rev. Lett. 86 2854
[5] Sørensen E S and Affleck I 2005 Phys. Rev. Lett. 94 086601
[6] Bergmann G 2008 Phys. Rev. B 77 104401
[7] Holzner A, McCulloch I P, Schollwock U, von Delft J and Heidrich- Meisner F 2009 Phys. Rev. B 80 205114
[8] Busser C A, Martins G B, Costa Ribeiro L, Vernek E, Anda E V and Dagotto E 2010 Phys. Rev. B 81 045111
[9] Gubernatis J E, Hirsch J E and Scalapino D J 1987 Phys. Rev. B 35 8478
[10] Barzykin V and Affleck I 1996 Phys. Rev. Lett. 76 4959
[11] Simon P and Affleck I 2002 Phys. Rev. Lett. 89 206602
[12] Simon P and Affleck I 2003 Phys. Rev. B 68 115304
[13] Hand T, Kroha J and Monien H 2006 Phys. Rev. Lett. 97 136604
[14] Borda L 2007 Phys. Rev. B 75 041307
[15] Affleck I, Borda L and Saleur H 2008 Phys. Rev. B 77 180404
[16] Pereira R G, Laflorencie N, Affleck I and Halperin B I 2008 Phys. Rev. B 77 125327
[17] Mitchell A K, Becker M and Bulla R 2011 Phys. Rev. B 84 115120
[18] Yoshii R and Eto M 2011 Phys. Rev. B 83 165310
[19] Park J, Lee S S B, Oreg Y and Sim H S 2013 Phys. Rev. Lett. 110 246603
[20] Busser C A, Martins G B and Feiguin A E 2013 Phys. Rev. B 88 245113
[21] Shirakawa T and Yunoki S 2014 Phys. Rev. B 90 195109
[22] Shirakawa T and Yunoki S 2016 Phys. Rev. B 93 205124
[23] Boyce J B and Slichter C P 1974 Phys. Rev. Lett. 32 61
[24] Boyce J B and Slichter C P 1976 Phys. Rev. B 13 379
[25] Madhavan V, Chen W, Jamneala T, Crommie M F and Wingreen N S 1998 Science 280 567
[26] Manoharan H C, Lutz C P and Eigler D M 2000 Nature 403 512
[27] Fu Y S, Ji S H, Chen X, Ma X C, Wu R, Wang C C, Duan W H, Qiu X H, Sun B, Zhang P, Jia J F and Xue Q K 2007 Phys. Rev. Lett. 99 256601
[28] Pruser H, Wenderoth M, Dargel P E, Weismann A, Peters R, Pruschke T and Ulbrich R G 2011 Nat. Phys. 7 203
[29] Borzenets I V, Shim J, Chen J C H, Ludwig A, Wieck A D, Tarucha S, Sim H S and Yamamoto M 2020 Nature 579 210
[30] YU L 1965 Acta Phys. Sin. 21 75 (in Chinese)
[31] Soda T, Matsuura T and Nagaoka Y 1967 Prog. Theor. Phys. 38 551
[32] Shiba H 1968 Prog. Theor. Phys. 40 435
[33] Rusinov A I 1969 Soviet J. Exp. Theor. Phys. Lett. 9 85
[34] Sakurai A 1970 Prog. Theor. Phys. 44 1472
[35] Muller-Hartmann E and Zittartz J 1971 Phys. Rev. Lett. 26 428
[36] Matsuura T 1977 Prog. Theor. Phys. 57 1823
[37] Satori K, Shiba H, Sakai O and Shimizu Y 1992 J. Phys. Soc. Jpn. 61 3239
[38] Sakai O, Shimizu Y, Shiba H and Satori K 1993 J. Phys. Soc. Jpn. 62 3181
[39] Yazdani A, Jones B A, Lutz C P, Crommie M F and Eigler D M 1997 Science 275 1767
[40] Balatsky A V, Vekhter I and Zhu J X 2006 Rev. Mod. Phys. 78 373
[41] Bauer J, Oguri A and Hewson A C 2007 J. Phys.: Condens. Matter 19 486211
[42] Karrasch C, Oguri A and Meden V 2008 Phys. Rev. B 77 024517
[43] Ji S H, Zhang T, Fu Y S, Chen X, Ma X C, Li J, Duan W H, Jia J F and Xue Q K 2008 Phys. Rev. Lett. 100 226801
[44] Luitz D J and Assaad F F 2010 Phys. Rev. B 81 024509
[45] Franke K J, Schulze G and Pascual J I 2011 Science 332 940
[46] Sau J D and Demler E 2013 Phys. Rev. B 88 205402
[47] Yao N Y, Glazman L I, Demler E A, Lukin M D and Sau J D 2014 Phys. Rev. Lett. 113 087202
[48] Yao N Y, Moca C P, Weymann I, Sau J D, Lukin M D, Demler E A and Zarand G 2014 Phys. Rev. B 90 241108
[49] Zitko R, Lim J S, L øpez R and Aguado R 2015 Phys. Rev. B 91 045441
[50] Hatter N, Heinrich B W, Ruby M, Pascual J I and Franke K J 2015 Nat. Commun. 6 8988
[51] Lee E J H, Jiang X, Zitko R, Aguado R, Lieber C M and De Franceschi S 2017 Phys. Rev. B 95 180502
[52] Zazunov A, Plugge S and Egger R 2018 Phys. Rev. Lett. 121 207701
[53] Li L, Gao M X, Wang Z H, Luo H G and Chen W Q 2018 Phys. Rev. B 97 064519
[54] Akkaravarawong K, Vayrynen J I, Sau J D, Demler E A, Glazman L I and Yao N Y 2019 Phys. Rev. Res. 1 033091
[55] Moca C P, Weymann I, Werner M A and Zarand G 2021 Phys. Rev. Lett. 127 186804
[56] Mishra A, Simon P, Hyart T and Trif M 2021 PRX Quantum 2 040347
[57] Pasnoori P R, Andrei N, Rylands C and Azaria P 2022 Phys. Rev. B 105 174517
[58] Deacon R S, Tanaka Y, Oiwa A, Sakano R, Yoshida K, Shibata K, Hirakawa K and Tarucha S 2010 Phys. Rev. Lett. 104 076805
[59] Piquard C, Glidic P, Han C, Aassime A, Cavanna A, Gennser U, Meir Y, Sela E, Anthore A and Pierre F 2023 Nat. Commun. 14 7263
[60] He R Q and Lu Z Y 2014 Phys. Rev. B 89 085108
[61] He R Q, Dai J and Lu Z Y 2015 Phys. Rev. B 91 155140
[62] Zheng R, He R and Lu Z 2020 Sci. China Phys. Mech. Astron. 63 297411
[63] Zheng R, He R Q and Lu Z Y 2021 Phys. Rev. B 103 045111
[64] Zheng R, He R Q and Lu Z Y 2018 Chin. Phys. Lett. 35 067301
[65] Zheng R, He R Q and Lu Z Y 2021 Phys. Rev. B 104 235134
[66] Zheng R, He R Q and Lu Z Y 2023 Phys. Rev. B 107 115149
[67] Lowdin P O 1955 Phys. Rev. 97 1474
[68] Luo H G, Qin M P and Xiang T 2010 Phys. Rev. B 81 235129
[69] Zgid D, Gull E and Chan G K L 2012 Phys. Rev. B 86 165128
[70] Lin C and Demkov A A 2013 Phys. Rev. B 88 035123
[71] Lu Y, Hoppner M, Gunnarsson O and Haverkort M W 2014 Phys. Rev. B 90 085102
[72] Fishman M T and White S R 2015 Phys. Rev. B 92 075132
[73] Lu Y, Cao X, Hansmann P and Haverkort M W 2019 Phys. Rev. B 100 115134
[74] Kuhner T D and White S R 1999 Phys. Rev. B 60 335
[75] Jeckelmann E 2002 Phys. Rev. B 66 045114
[76] Andrei N, Furuya K and Lowenstein J H 1983 Rev. Mod. Phys. 55 331
[1] A semiconductor-like in-plane junction between overdoped and optimally doped La2-xCexCuO4
Mohsin Rafique(莫辛 拉菲克), Rui Wu(吴蕊), Zefeng Lin(林泽丰), Kui Jin(金魁), Qi-Kun Xue(薛其坤), and Ding Zhang(张定). Chin. Phys. B, 2025, 34(9): 097404.
[2] Tunable colossal negative magnetoresistance of topological semimetal EuB6 thin sheets
Ke Zhu(祝轲), Qi Qi(齐琦), Yaofeng Xie(谢耀锋), Lulu Pan(潘禄禄), Senhao Lv(吕森浩), Guojing Hu(胡国静), Zhen Zhao(赵振), Guoyu Xian(冼国裕), Yechao Han(韩烨超), Lihong Bao(鲍丽宏), Ying Zhang(张颖), Xiao Lin(林晓), Hui Guo(郭辉), Haitao Yang(杨海涛), and Hong-Jun Gao(高鸿钧). Chin. Phys. B, 2025, 34(9): 097308.
[3] Observation of distinct Kondo effect and anomalous Hall effect in V self-intercalated layered antiferromagnet V5S8 crystals
Yaofeng Xie(谢耀锋), Senhao Lv(吕森浩), Qi Qi(齐琦), Guojing Hu(胡国静), Ke Zhu(祝轲), Zhen Zhao(赵振), Guoyu Xian(冼国裕), Yechao Han(韩烨超), Ruwen Wang(王汝文), Chenyu Bai(白晨宇), Lihong Bao(鲍丽宏), Xiao Lin(林晓), Hui Guo(郭辉), Haitao Yang(杨海涛), and Hong-Jun Gao(高鸿钧). Chin. Phys. B, 2025, 34(8): 087303.
[4] Surface reconstruction modulated superconductivity on quasi-2D iron pnictide superconductor KCa2Fe4As4F2
Wenjing Zeng(曾文静), Zongyuan Zhang(张宗源), Xiaoyan Dong(董晓燕), Yubing Tu(涂玉兵), Yanwei Wu(吴彦玮), Teng Wang(王腾), Fan Zhang(张凡), Shuai Shao(邵帅), Jie Hou(侯杰), Xingyuan Hou(侯兴元), Ning Hao(郝宁), Gang Mu(牟刚), and Lei Shan(单磊). Chin. Phys. B, 2025, 34(8): 087402.
[5] Observation of a long-range unidirectional charge density wave in kagome superconductor KV3Sb5
Xingwei Shi(石兴伟), Xiao Liu(刘潇), Geng Li(李更), Zhen Zhao(赵振), Haitao Yang(杨海涛), Xiao Lin(林晓), and Hong-Jun Gao(高鸿钧). Chin. Phys. B, 2025, 34(7): 077101.
[6] Nontrivial Fermi surface topology in kagome superconductor CsTi3Bi5 revealed by de Haas-van Alphen oscillation
Yuhang Zhang(张宇航), Xinwei Yi(易鑫伟), Zhen Zhao(赵振), Jiali Liu(刘家利), Aini Xu(胥艾妮), Dong Li(李栋), Zouyouwei Lu(鲁邹有为), Yue Liu(刘樾), Jihu Lu(卢佶虎), Hua Zhang(张华), Hui Chen(陈辉), Shiliang Li(李世亮), Ziyi Liu(刘子儀), Jinguang Cheng(程金光), Gang Su(苏刚), Haitao Yang(杨海涛), Xiaoli Dong(董晓莉), Hong-Jun Gao(高鸿钧), and Zhongxian Zhao(赵忠贤). Chin. Phys. B, 2025, 34(7): 077107.
[7] Dimensional crossover from quasi-2D to 3D superconductivity in (Li,Fe)OHFeSe1-xSx driven by chemical pressure
Yuxin Ma(马宇欣), Munan Hao(郝木难), Qi Li(李琦), Ke Ma(马克), Haodong Li(李浩东), Duo Zhang(张铎), Ruijin Sun(孙瑞锦), Shifeng Jin(金士锋), and Changchun Zhao(赵长春). Chin. Phys. B, 2025, 34(6): 067402.
[8] Interacting Dirac semi-metal state in nonsymmorphic Kondo-lattice compound CeAgSb2
Da-Liang Guo(郭达良), and Huan Li(黎欢). Chin. Phys. B, 2025, 34(6): 067102.
[9] Crystal structure, magnetic properties, and tunable Kondo effect in a new compound Nd5ScSb12
Yi-Ran Li(李祎冉), Na Li(李娜), Ping Su(苏平), Hui Liang(梁慧), Kai-Yuan Hu(胡开源), Ying Zhou(周颖), Dan-Dan Wu(吴丹丹), Yan Sun(孙燕), Qiu-Ju Li(李秋菊), Xia Zhao(赵霞), Xue-Feng Sun(孙学峰), and Yi-Yan Wang(王义炎). Chin. Phys. B, 2025, 34(6): 067502.
[10] Crystal growth and characterization of a hole-doped iron-based superconductor Ba(Fe0.875Ti0.125)2As2
Yi-Li Sun(孙毅丽), Ze-Zhong Li(李泽众), Yang Li(李阳), Hong-Lin Zhou(周宏霖), Amit Pokhriyal, Haranath Ghosh, Shi-Liang Li(李世亮), and Hui-Qian Luo(罗会仟). Chin. Phys. B, 2025, 34(12): 127401.
[11] Unconventional superconductivity in Cr-based nitride La3Cr10-xN11
M Y Zou(邹牧远), J C Jiao(焦嘉琛), K W Chen(陈锴文), C Y Jiang(姜程予), C S Chen(陈长胜), X Li(李鑫), Q Wu(吴琼), N Y Zhang(张宁远), O O Bernal, P C Ho, A Koda, D E MacLaughlin, and L Shu(殳蕾). Chin. Phys. B, 2025, 34(11): 117104.
[12] HTSC-2025: A benchmark dataset of ambient-pressure high-temperature superconductors for AI-driven critical temperature prediction
Xiao-Qi Han(韩小琪), Ze-Feng Gao(高泽峰), Xin-De Wang(王馨德), Zhenfeng Ouyang(欧阳振峰), Peng-Jie Guo(郭朋杰), and Zhong-Yi Lu(卢仲毅). Chin. Phys. B, 2025, 34(10): 100301.
[13] Database of superconductors with kagome lattice by high-throughput screening
Lihong Wang(王历宏), Qi Li(李琦), Ke Ma(马克), Yingpeng Yu(于英鹏), Shifeng Jin(金士锋), and Xiaolong Chen(陈小龙). Chin. Phys. B, 2025, 34(10): 106101.
[14] Visualizing extended defects at the atomic level in a Bi2Sr2CaCu2O8+δ superconducting wire
Kejun Hu(胡柯钧), Shuai Wang(王帅), Boyu Li(李泊玉), Ying Liu(刘影), Binghui Ge(葛炳辉), and Dongsheng Song(宋东升). Chin. Phys. B, 2024, 33(9): 096101.
[15] Topological superconductors with spin-triplet pairings and Majorana Fermi arcs
Shi Huang(黄石) and Xi Luo(罗熙). Chin. Phys. B, 2024, 33(8): 087301.
No Suggested Reading articles found!