Please wait a minute...
Chin. Phys. B, 2026, Vol. 35(2): 026101    DOI: 10.1088/1674-1056/adf0e5
CONDENSED MATTER: STRUCTURAL, MECHANICAL, AND THERMAL PROPERTIES Prev   Next  

Effect of chemical short-range order on primary radiation damage in TiVTaNb high-entropy alloys

Yong-Peng Zhao(赵永鹏), Yu-Ze Liu(刘禹泽), Yan-Kun Dou(豆艳坤), Zhong-Ao Zhang(张忠傲), Xin-Fu He(贺新福), and Wen Yang(杨文)
Reactor Engineering Technology Research Division, China Institute of Atomic Energy, Beijing 102413, China
Abstract  Molecular dynamics simulations were carried out to study the effect of chemical short-range order (CSRO) on the primary radiation damage in TiVTaNb high-entropy alloys (HEAs). We have performed displacement cascade simulations to explore the CSRO effect on the generation and evolution behaviors of irradiation defects. The results demonstrate that CSRO can suppress the formation of Frenkel pairs in TiVTaNb HEAs, with the suppression effect becoming more pronounced as the degree of CSRO increases. CSRO can change the types of interstitial defects generated during cascade collisions. Specifically, as the degree of CSRO increases, the proportion of Ti-related interstitials shows a marked enhancement, primarily evidenced by a significant rise in Ti-Ti dumbbells accompanied by a corresponding decrease in Ti-V dumbbells. CSRO exhibits negligible influence on defect clustering and the nucleation and evolution of dislocation loops. Regardless of CSRO conditions, TiVTaNb HEAs preserve exceptional radiation tolerance throughout the cascade damage process, suggesting that the intrinsic properties of this multi-principal element system dominate its radiation response. These findings provide fundamental insights into the CSRO effect on defect formation and evolution behaviors in HEAs, which may provide new design strategies for high-entropy alloys.
Keywords:  high-entropy alloy      chemical short-range order      primary radiation damage      molecular dynamics simulation  
Received:  07 May 2025      Revised:  14 July 2025      Accepted manuscript online:  17 July 2025
PACS:  61.72.J- (Point defects and defect clusters)  
  02.70.Ns (Molecular dynamics and particle methods)  
  61.82.Bg (Metals and alloys)  
Fund: Project supported by the Youth Program of the National Natural Science Foundation of China (Grant No. 12405324), the CNNC Science Fund for Talented Young Scholars (Grant No. 24940), and the CNNC Basic Science Fund (Grant No. 24851).

Cite this article: 

Yong-Peng Zhao(赵永鹏), Yu-Ze Liu(刘禹泽), Yan-Kun Dou(豆艳坤), Zhong-Ao Zhang(张忠傲), Xin-Fu He(贺新福), and Wen Yang(杨文) Effect of chemical short-range order on primary radiation damage in TiVTaNb high-entropy alloys 2026 Chin. Phys. B 35 026101

[1] Miracle D B and Senkov O N 2017 Acta Mater. 122 448
[2] Pickering E J, Carruthers A W, Barron P J, Middleburgh S C, Armstrong D E J and Gandy A S 2021 Entropy 23 98
[3] Yu B, Ren Y, Zeng Y, Ma W, Morita K, Zhan S, Lei Y, Lv G, Li S and Wu J 2024 J. Mater. Sci. Technol. 29 2689
[4] Senkov O N, Wilks G B, Miracle D B, Chuang C P and Liaw P K 2010 Intermetallics 18 1758
[5] Senkov O N, Gorsse S and Miracle D B 2019 Acta Mater. 175 394
[6] Dewangan S K, Mangish A, Kumar S, Sharma A, Ahn B and Kumar V 2022 Eng. Sci. Technol. Int. J. 35 101211
[7] Lee C, Song G, Gao M C, Feng R, Chen P and Brechtl J 2018 Acta Mater. 160 158
[8] Jia N, Li Y, Huang H, Chen S, Li D, Dou Y, He X, Yang W, Yin X and Jin K 2021 J. Nucl. Mater. 550 152937
[9] Lee C, Maresca F, Feng R, Chou Y, Ungar T and Widom M 2021 Nat. Commun. 12 5474
[10] Yin X, Dou Y, He X, Jin K, Wang C, Dong Y, Wang H, Zhong W, Xue Y and Yang W 2022 JOM 74 4326
[11] Chen J, Dong Y, Jin K, Wang B and Xue Y 2022 J. Phys.: Conf. Ser. 2383 012136
[12] Zhao Y, Dou Y, He X, Deng H, Wang L and Yang W 2023 Comput. Mater. Sci. 218 111943
[13] Dou Y, Zhao Y, He X, Gao J, Cao J and Yang W 2023 J. Nucl. Mater. 573 154096
[14] Wang L, Zhao Y, Dou Y, He X, Zhang Z, Chen M, Deng H and Yang W 2024 Crystals 14 166
[15] Zhao Y, Dou Y, He X, Cao H, Wang L, Deng H and Yang W 2024 Chin. Phys. B 33 036104
[16] Chen X, Wang Q, Cheng Z, Zhu M, Zhou H, Jiang P, Zhou L, Xue Q, Yuan F, Zhu J, Wu X and Ma E 2021 Nature 592 712
[17] Wu Y, Zhang F, Yuan X, Huang H, Wen X, Wang Y, Zhang M, Wu H, Liu X, Wang H, Jiang S and Lu Z 2021 J. Mater. Sci. Technol. 62 214
[18] Ding J, Yu Q, Asta M and Ritchie R O 2018 Proc. Natl. Acad. Sci. USA 115 8919
[19] Zhang R, Zhao S, Ding J, Chong Y, Jia T, Ophus C, Asta M, Ritchie R O and Minor A M 2020 Nature 581 283
[20] Xie Y, Artymowicz D M, Lopes P P, Aiello A, Wang D, Hart J L, Anber E, Taheri M L, Zhuang H, Newman R C and Sieradzki K 2021 Nat. Mater. 20 789
[21] Scully J R, Inman S B, Gerard A Y, Taylor C D, Windl W, Schreiber D K, Lu P, Saal J E and Frankel G S 2020 Scr. Mater. 188 96
[22] Zhang Z, Su Z, Zhang B, Yu Q, Ding J, Shi T, Lu C, Ritchie R O and Ma E 2023 Proc. Natl. Acad. Sci. USA 120 e2218673120
[23] Cao P 2021 Acc. Mater. Res. 2 71
[24] Liu L, Liu X, Du Q, Wang H, Wu Y, Jiang S and Lu Z 2023 J. Mater. Sci. Technol. 135 13
[25] Zhou Y, Shi T, Li J, Wu L, Peng Q and Lu C 2023 Int. J. Plast. 171 103768
[26] Xing B, Wang X, Bowman W J and Cao P 2022 Scr. Mater. 210 114450
[27] Zhao S, Xiong Y, Ma S, Zhang J, Xu B and Kai J 2021 Acta Mater. 219 117233
[28] Shi T, Su Z, Li J, Liu C, Yang J, He X, Yun D, Peng Q, Lu C 2022 Acta Mater. 229 117806
[29] Plimpton S 1995 J. Comput. Phys. 117 1
[30] Qiu R, Chen Y, Liao X, Lin Y, Dou Y, He X, Yang W, Hu W and Deng H 2022 J Phys.: Condens Matter 35 055701
[31] Cowley J M 1950 Phys. Rev. 77 669
[32] Stukowski A 2009 Model. Simul. Mat. Sci. Eng. 18 015012
[33] Stukowski A 2014 JOM 66 399
[34] Qiu R, Chen Y, Liao X, Dou Y, He X, Yang W, Hu W and Deng H 2024 J. Nucl. Mater. 599 155259
[1] Mechanism of loop-2 in facilitating microtubule depolymerase activity of kinesin-8 motors
Xiao-Xuan Shi(史晓璇), Yao Wang(王瑶), Jie Wang(王杰), Yu-Ru Liu(刘玉如), and Ping Xie(谢平). Chin. Phys. B, 2026, 35(2): 028701.
[2] Yielding transition under oscillatory shear in metallic glasses
Nannan Ren(任楠楠), Tiantian Meng(孟天天), Hui Huang(黄慧), Qunshuang Ma(马群双), Jun Fang(房军), Qin Li(李勤), and Weihuo Li(李维火). Chin. Phys. B, 2026, 35(1): 016103.
[3] High-entropy alloys in synergistic electrocatalytic conversion applications
Hui Zhang(张辉), Zhengxiong Liu(刘争雄), Le Fang(方乐), Yin Wang(王音), Shuai Chen(陈帅), and Wei Ren(任伟). Chin. Phys. B, 2025, 34(8): 086109.
[4] General-purpose moment tensor potential for Ga-In liquid alloys towards large-scale molecular dynamics with ab initio accuracy
Kai-Jie Zhao(赵凯杰) and Zhi-Gong Song(宋智功). Chin. Phys. B, 2025, 34(6): 066101.
[5] Depolymerization mechanism of microtubule revealed by nucleotide-dependent changes of longitudinal and lateral interactions
Bingbing Zhang(张冰冰), Ziling Huo(霍子玲), Jiaxi Li(李佳希), Jingyu Qin(覃静宇), and Yizhao Geng(耿轶钊). Chin. Phys. B, 2025, 34(6): 068702.
[6] Molecular dynamics evaluation of self-diffusion coefficients in two-dimensional dusty plasmas
Muhammad Asif Shakoori, Misbah Khan, Haipeng Li(李海鹏), Aamir Shahzad, Maogang He(何茂刚), and Syed Ali Raza. Chin. Phys. B, 2025, 34(4): 045202.
[7] Molecular dynamics simulations of collision cascades in polycrystalline tungsten
Lixia Liu(刘丽霞), Mingxuan Jiang(蒋明璇), Ning Gao(高宁), Yangchun Chen(陈阳春), Wangyu Hu(胡望宇), and Hiuqiu Deng(邓辉球). Chin. Phys. B, 2025, 34(4): 046103.
[8] Elastic-plastic behavior of nickel-based single crystal superalloys with γ-γ' phases based on molecular dynamics simulations
Jing-Zhao Cao(曹景昭), Yun-Guang Zhang(张云光), Zhong-Kui Zhang(张中奎), Jiang-Peng Fan(范江鹏), Qi Dong(董琪), and Ying-Ying Fang(方盈盈). Chin. Phys. B, 2025, 34(4): 046204.
[9] Structural and transport properties of (Mg,Fe)SiO3 at high temperature and high pressure
Shu Huang(黄澍), Zhiyang Xiang(向志洋), Shi He(何适), Luhan Yin(尹路寒), Shihe Zhang(张时赫), Chen Chen(陈晨), Kaihua He(何开华), and Cheng Lu(卢成). Chin. Phys. B, 2025, 34(3): 036102.
[10] Molecular dynamics simulations reveal the activation mechanism of human TMEM63A induced by lysophosphatidylcholine insertion
Zain Babar, Junaid Wahid, Xiaofei Ji(季晓飞), Huilin Zhao(赵慧琳), Hua Yu(于华), and Dali Wang(王大力). Chin. Phys. B, 2025, 34(12): 128704.
[11] Interfacial thermal resistance in amorphous Mo/Si structures: A molecular dynamics study
Weiwu Miao(苗未午), Hongyu He(贺虹羽), Yi Tao(陶毅), Qiong Wu(吴琼), Chao Wu(吴超), and Chenhan Liu(刘晨晗). Chin. Phys. B, 2025, 34(10): 106501.
[12] Plastic deformation mechanism of γ-phase U-Mo alloy studied by molecular dynamics simulations
Chang Wang(王畅), Peng Peng(彭芃), and Wen-Sheng Lai(赖文生). Chin. Phys. B, 2025, 34(1): 018101.
[13] Influence of temperature, stress, and grain size on behavior of nano-polycrystalline niobium
Yu-Ping Yan(晏玉平), Liu-Ting Zhang(张柳亭), Li-Pan Zhang(张丽攀), Gang Lu(芦刚), and Zhi-Xin Tu(涂志新). Chin. Phys. B, 2024, 33(7): 076201.
[14] Evolution of helium bubbles in FeCoNiCr-based high-entropy alloys containing $ \gamma '$ nanoprecipitates
Ting Feng(冯婷), Sheng-Ming Jiang(蒋胜明), Xiao-Tian Hu(胡潇天), Zi-Jun Zhang(张子骏), Zi-Jing Huang(黄子敬), Shi-Gang Dong(董士刚), and Jian Zhang(张建). Chin. Phys. B, 2024, 33(7): 076501.
[15] Factors resisting protein adsorption on hydrophilic/hydrophobic self-assembled monolayers terminated with hydrophilic hydroxyl groups
Dangxin Mao(毛党新), Yuan-Yan Wu(吴园燕), and Yusong Tu(涂育松). Chin. Phys. B, 2024, 33(6): 068701.
No Suggested Reading articles found!