Please wait a minute...
Chin. Phys. B, 2026, Vol. 35(2): 027102    DOI: 10.1088/1674-1056/ae00b4
CONDENSED MATTER: ELECTRONIC STRUCTURE, ELECTRICAL, MAGNETIC, AND OPTICAL PROPERTIES Prev   Next  

Two-dimensional kagome semiconductor Sc6S5X6 (X = Cl, Br, I) with trilayer kagome lattice

Jin-Ling Yan(闫金铃)1,†, Xing-Yu Wang(王星雨)1,2,†, Gen-Ping Wu(吴根平)3, Hao Wang(王浩)3, Ya-Jiao Ke(柯亚娇)1,‡, Jiafu Wang(王嘉赋)1, Zhi-Hong Liu(刘志宏)3,§, and Jun-Hui Yuan(袁俊辉)1,¶
1 School of Physics and Mechanics, Wuhan University of Technology, Wuhan 430070, China;
2 School of Materials and Microelectronics, Wuhan University of Technology, Wuhan 430070, China;
3 Wuhan Second Ship Design and Research Institute, Wuhan 430205, China
Abstract  Two-dimensional (2D) multilayer kagome materials hold significant research value for regulating kagome-related physical properties and exploring quantum effects. However, their development is hindered by the scarcity of available material systems, making the identification of novel 2D multilayer kagome candidates particularly important. In this work, three types of 2D materials with trilayer kagome lattices, namely Sc$_{6}$S$_{5}X_{6}$ ($X = {\rm Cl}$, Br, I), are predicted based on first-principles calculations. These 2D materials feature two kagome lattices composed of Sc atoms and one kagome lattice composed of S atoms. Stability analysis indicates that these materials can exist as free-standing 2D materials. Electronic structure calculations reveal that Sc$_{6}$S$_{5}X_{6}$ are narrow-bandgap semiconductors (0.76-0.95 eV), with their band structures exhibiting flat bands contributed by Sc-based kagome lattices and Dirac band gaps resulting from symmetry breaking. The sulfur-based kagome lattice in the central layer contributes an independent flat band below the Fermi level. Additionally, Sc$_{6}$S$_{5}X_{6}$ exhibit high carrier mobility, with hole and electron mobilities reaching up to 10$^{3}$ cm$^{2}\cdot$V$^{-1}\cdot$s$^{-1}$, indicating potential applications in low-dimensional electronic devices. This work provides an excellent example for the development of novel multilayer 2D kagome materials.
Keywords:  multilayer kagome lattice      two-dimensional materials      carrier mobility      first-principles calculations  
Received:  05 August 2025      Revised:  28 August 2025      Accepted manuscript online:  29 August 2025
PACS:  71.18.+y (Fermi surface: calculations and measurements; effective mass, g factor)  
  71.20.-b (Electron density of states and band structure of crystalline solids)  
Fund: This project was supported by the Fundamental Research Funds for the Central Universities (WUT: 2024IVA052 and Grant No. 104972025KFYjc0089).
Corresponding Authors:  Ya-Jiao Ke, Zhi-Hong Liu, Jun-Hui Yuan     E-mail:  keyajiao@whut.edu.cn;54181880@qq.com;yuanjh90@163.com

Cite this article: 

Jin-Ling Yan(闫金铃), Xing-Yu Wang(王星雨), Gen-Ping Wu(吴根平), Hao Wang(王浩), Ya-Jiao Ke(柯亚娇), Jiafu Wang(王嘉赋), Zhi-Hong Liu(刘志宏), and Jun-Hui Yuan(袁俊辉) Two-dimensional kagome semiconductor Sc6S5X6 (X = Cl, Br, I) with trilayer kagome lattice 2026 Chin. Phys. B 35 027102

[1] Zhang G, Wu H, Jin W, Yang L, Xiao B, Yu J, Zhang W and Chang H 2025 Cell Rep. Phys. Sci. 6 102356
[2] Liu A, Zhang X, Liu Z, Li Y, Peng X, Li X, Qin Y, Hu C, Qiu Y, Jiang H, Wang Y, Li Y, Tang J, Liu J, Guo H, Deng T, Peng S, Tian H and Ren T L 2024 Nano-Micro Lett. 16 119
[3] Tong L, Peng Z, Lin R, Li Z, Wang Y, Huang X, Xue K H, Xu H, Liu F, Xia H, Wang P, Xu M, Xiong W, Hu W, Xu J, Zhang X, Ye L and Miao X 2021 Science 373 1353
[4] Du L 2024 Nat. Rev. Phys. 6 157
[5] Shuck C E, Xiao X and Wang Z 2024 Acc. Chem. Res. 57 3079
[6] Wilson N P, Yao W, Shan J and Xu X 2021 Nature 599 383
[7] Zhou Y and Zhao L 2017 Adv. Mater. 29 1702676
[8] Wang Q, Lei H, Qi Y and Felser C 2024 Acc. Mater. Res. 5 786
[9] Li S 2025 Chinese Phys. Lett. 42 070716
[10] Mendels P, Bert F, De VriesMA, Olariu A, Harrison A, Duc F, Trombe J C, Lord J S, Amato A and Baines C 2007 Phys. Rev. Lett. 98 077204
[11] Yin J X, Lian B and Hasan M Z 2022 Nature 612 647
[12] Jiang K, Wu T, Yin J X, Wang Z, Hasan M Z, Wilson S D, Chen X and Hu J 2022 Natl. Sci. Rev. nwac199
[13] Jiang H C, Devereaux T and Kivelson S A 2017 Phys. Rev. Lett. 119 067002
[14] Xu X, Yin J X, Qu Z and Jia S 2023 Rep. Prog. Phys. 86 114502
[15] Chen H, Hu B, Ye Y, Yang H and Gao H J 2022 Chin. Phys. B 31 097405
[16] Ye J, Lin Y,Wang H, Song Z, Feng J, XieWand Jia S 2024 Chin. Phys. B 33 057103
[17] Zhou H, Liu H, Ji H, Li X, Meng S and Sun J T 2023 npj Quantum Mater. 8 16
[18] Regmi S, Fernando T, Zhao Y, Sakhya A P, Dhakal G, Bin Elius I, Vazquez H, Denlinger J D, Yang J, Chu J H, Xu X, Cao T and Neupane M 2022 Commun. Mater. 3 100
[19] Lu J, Chen H, Zhao X, Hu G, Yuan X and Ren J 2024 Appl. Phys. Lett. 124 072101
[20] Li Y, Liu C, Zhao G D, Hu T and Ren W 2021 Phys. Rev. B 104 L060405
[21] You J Y and Feng Y P 2023 Mater. Today Chem. 30 101566
[22] Wang H and Yang L 2024 J. Phys. Chem. Lett. 15 8689
[23] Wang R,Wang C, Li R, Guo D, Dai J, Zong C, ZhangWand JiW2025 Chin. Phys. B 34 046801
[24] Huang S, Xie Y, Zhong C and Chen Y 2018 J. Phys. Chem. Lett. 9 2751
[25] Li J, Wang X T, Chen Y Q, Wei Y H, Yuan H K and Tian C L 2024 Phys. Chem. Chem. Phys. 26 3092
[26] Wu D, Lv H, Zhuo Z, Li X,Wu X and Yang J 2021 J. Phys. Chem. Lett. 12 3528
[27] Zhang B, Deng F, Chen X, Lv X and Wang J 2022 J. Phys.: Condens. Matter 34 475702
[28] Park S, Kang S, Kim H, Lee K H, Kim P, Sim S, Lee N, Karuppannan B, Kim J, Kim J, Sim K I, Coak M J, Noda Y, Park C H, Kim J H and Park J G 2020 Sci. Rep. 10 20998
[29] Zhu Y, Yuan J H and Wang J 2025 Phys. B Cond. Matt. 700 416894
[30] Zhu Y, Yuan J H and Wang J 2025 Appl. Surf. Sci. 709 163829
[31] Zhu Y, Yuan J H, Fang W Y, Sun Z G and Wang J 2023 Appl. Surf. Sci. 636 157817
[32] Yan J L,Wang X Y, Chen L, Yuan J H, Ke Y J andWang J 2025 Mater. Today Commun. 48 113650
[33] Blöchl P E 1994 Phys. Rev. B 50 17953
[34] Kresse G and Joubert D 1999 Phys. Rev. B 59 1758
[35] Kresse G and Furthmüller J 1996 Comput. Mater. Sci. 6 15
[36] Kresse G and Furthmüller J 1996 Phys. Rev. B 54 11169
[37] Perdew J P, Burke K and Ernzerhof M 1996 Phys. Rev. Lett. 77 3865
[38] Nelson R, Ertural C, George J, Deringer V L, Hautier G and Dronskowski R 2020 J. Comput. Chem. 41 1931
[39] Togo A and Tanaka I 2015 Scripta Mater. 108 1
[40] Wang V, Xu N, Liu J C, Tang G and Geng W T 2021 Comput. Phys. Commun. 267 108033
[41] BornMand Huang K 1996 Dynamical Theory of Crystal Lattices (New York: Oxford University Press)
[42] Li T 2012 Phys. Rev. B 85 235407
[43] Liu F, Ming P and Li J 2007 Phys. Rev. B 76 064120
[44] Yuan J, Yu N, Xue K and Miao X 2017 RSC Adv. 7 8654
[45] Noury S, Krokidis X, Fuster F and Silvi B 1999 Comput. Chem. 23 597
[46] Tang W, Sanville E and Henkelman G 2009 J. Phys. Condens. Matter 21 084204
[47] Mao G Q, Yan Z Y, Xue K H, Ai Z, Yang S, Cui H, Yuan J H, Ren T L and Miao X 2022 J. Phys.: Condens. Matter 34 403001
[48] Yang S, Xue K H and Miao X 2025 J. Phys.: Condens. Matter 37 233001
[49] Yuan J H, Chen Q, Fonseca L R C, Xu M, Xue K H and Miao X S 2018 J. Phys. Commun. 2 105005
[50] Xue K H, Yuan J H, Fonseca L R C and Miao X S 2018 Comput. Mater. Sci. 153 493
[51] Bardeen J and Shockley W 1950 Phys. Rev. 80 72
[52] Lang H, Zhang S and Liu Z 2016 Phys. Rev. B 94 235306
[1] Three-dimensional flat bands and possible interlayer triplet pairing superconductivity in the alternating twisted NbSe2 moiré bulk
Shuang Liu(刘爽), Peng Chen(陈鹏), and Shihao Zhang(张世豪). Chin. Phys. B, 2026, 35(2): 026801.
[2] Machine learning-assisted optimization of MTO basis sets
Zhiqiang Li(李志强), and Lei Wang(王蕾). Chin. Phys. B, 2026, 35(1): 016301.
[3] First-principles insights into strain-mediated He migration and irradiation resistance in W-Ta-Cr-V complex alloys
Mengdie Wang(王梦蝶), Chao Zhang(张超), Xinyue Lan(兰新月), Biao Hu(胡标), and Xuebang Wu(吴学邦). Chin. Phys. B, 2026, 35(1): 016102.
[4] Unique high-energy excitons in two-dimensional transition metal dichalcogenides
Yongsheng Gao(高永盛), Yuanzheng Li(李远征), Weizhen Liu(刘为振), Chuxin Yan(闫楚欣), Qingbin Wang(王庆彬), Wei Xin(辛巍), Haiyang Xu(徐海阳), and Yichun Liu(刘益春). Chin. Phys. B, 2025, 34(9): 097102.
[5] Exciton insulators in two-dimensional systems
Huaiyuan Yang(杨怀远), Xi Dai(戴希), and Xin-Zheng Li(李新征). Chin. Phys. B, 2025, 34(9): 097301.
[6] Doping-induced magnetic and topological transitions in Mn2X2Te5 (X = Bi, Sb) bilayers
Wei Chen(陈威), Chuhan Tang(唐楚涵), Chao-Fei Liu(刘超飞), and Mingxing Chen(陈明星). Chin. Phys. B, 2025, 34(9): 097304.
[7] Site occupation of Al doping in Lu2SiO5: The role of ionic radius versus chemical valence
Xuejiao Sun(孙雪娇), Yu Cui(崔宇), Feng Gao(高峰), Zhongjun Xue(薛中军), Shuwen Zhao(赵书文), Dongzhou Ding(丁栋舟), Fan Yang(杨帆), and Yi-Yang Sun(孙宜阳). Chin. Phys. B, 2025, 34(9): 096101.
[8] Superconductivity and band topology of double-layer honeycomb structure M2N2 (M = Nb, Ta)
Jin-Han Tan(谭锦函), Na Jiao(焦娜), Meng-Meng Zheng(郑萌萌), Ping Zhang(张平), and Hong-Yan Lu(路洪艳). Chin. Phys. B, 2025, 34(9): 097402.
[9] First-principles calculations on strain tunable hyperfine Stark shift of shallow donors in Si
Zi-Kai Zhou(周子凯) and Jun Kang(康俊). Chin. Phys. B, 2025, 34(8): 087102.
[10] Unveiling the thermal transport mechanisms in novel carbon-based graphene-like materials using machine-learning potential
Yao-Yuan Zhang(章耀元), Meng-Qiu Long(龙孟秋), Sai-Jie Cheng(程赛杰), and Wu-Xing Zhou(周五星). Chin. Phys. B, 2025, 34(6): 067101.
[11] Unveiling the role of high-order anharmonicity in thermal expansion: A first-principles perspective
Tianxu Zhang(张天旭), Kun Zhou(周琨), Yingjian Li(李英健), Chenhao Yi(易晨浩), Muhammad Faizan, Yuhao Fu(付钰豪), Xinjiang Wang(王新江), and Lijun Zhang(张立军). Chin. Phys. B, 2025, 34(4): 046301.
[12] Electronic structure and carrier mobility of BSb nanotubes
Lantian Xue(薛岚天), Chennan Song(宋晨楠), Miaomiao Jian(见苗苗), Qiang Xu(许强), Yuhao Fu(付钰豪), Pengyue Gao(高朋越), and Yu Xie(谢禹). Chin. Phys. B, 2025, 34(3): 037304.
[13] Emergence of metal-semiconductor phase transition in MX2(M = Ni, Pd, Pt; X = S, Se, Te) moiré superlattices
Jie Li(李杰), Rui-Zi Zhang(张瑞梓), Jinbo Pan(潘金波), Ping Chen(陈平), and Shixuan Du(杜世萱). Chin. Phys. B, 2025, 34(3): 037302.
[14] Phonon-mediated superconductivity in orthorhombic XS (X = Nb, Ta or W)
Guo-Hua Liu(刘国华), Kai-Yue Jiang(江恺悦), Yi Wan(万一), Shu-Xiang Qiao(乔树祥), Jin-Han Tan(谭锦函), Na Jiao(焦娜), Ping Zhang(张平), and Hong-Yan Lu(路洪艳). Chin. Phys. B, 2025, 34(2): 027401.
[15] Comparative study on electronic structures of two phases compounds and origin of the structural phase transition in LiFePO4
Peiru Yang(杨佩如), Xinchun Du(杜新春), Jie Li(李杰), and Siqi Shi(施思齐). Chin. Phys. B, 2025, 34(11): 118201.
No Suggested Reading articles found!