| CONDENSED MATTER: ELECTRONIC STRUCTURE, ELECTRICAL, MAGNETIC, AND OPTICAL PROPERTIES |
Prev
Next
|
|
|
Two-dimensional kagome semiconductor Sc6S5X6 (X = Cl, Br, I) with trilayer kagome lattice |
| Jin-Ling Yan(闫金铃)1,†, Xing-Yu Wang(王星雨)1,2,†, Gen-Ping Wu(吴根平)3, Hao Wang(王浩)3, Ya-Jiao Ke(柯亚娇)1,‡, Jiafu Wang(王嘉赋)1, Zhi-Hong Liu(刘志宏)3,§, and Jun-Hui Yuan(袁俊辉)1,¶ |
1 School of Physics and Mechanics, Wuhan University of Technology, Wuhan 430070, China; 2 School of Materials and Microelectronics, Wuhan University of Technology, Wuhan 430070, China; 3 Wuhan Second Ship Design and Research Institute, Wuhan 430205, China |
|
|
|
|
Abstract Two-dimensional (2D) multilayer kagome materials hold significant research value for regulating kagome-related physical properties and exploring quantum effects. However, their development is hindered by the scarcity of available material systems, making the identification of novel 2D multilayer kagome candidates particularly important. In this work, three types of 2D materials with trilayer kagome lattices, namely Sc$_{6}$S$_{5}X_{6}$ ($X = {\rm Cl}$, Br, I), are predicted based on first-principles calculations. These 2D materials feature two kagome lattices composed of Sc atoms and one kagome lattice composed of S atoms. Stability analysis indicates that these materials can exist as free-standing 2D materials. Electronic structure calculations reveal that Sc$_{6}$S$_{5}X_{6}$ are narrow-bandgap semiconductors (0.76-0.95 eV), with their band structures exhibiting flat bands contributed by Sc-based kagome lattices and Dirac band gaps resulting from symmetry breaking. The sulfur-based kagome lattice in the central layer contributes an independent flat band below the Fermi level. Additionally, Sc$_{6}$S$_{5}X_{6}$ exhibit high carrier mobility, with hole and electron mobilities reaching up to 10$^{3}$ cm$^{2}\cdot$V$^{-1}\cdot$s$^{-1}$, indicating potential applications in low-dimensional electronic devices. This work provides an excellent example for the development of novel multilayer 2D kagome materials.
|
Received: 05 August 2025
Revised: 28 August 2025
Accepted manuscript online: 29 August 2025
|
|
PACS:
|
71.18.+y
|
(Fermi surface: calculations and measurements; effective mass, g factor)
|
| |
71.20.-b
|
(Electron density of states and band structure of crystalline solids)
|
|
| Fund: This project was supported by the Fundamental Research Funds for the Central Universities (WUT: 2024IVA052 and Grant No. 104972025KFYjc0089). |
Corresponding Authors:
Ya-Jiao Ke, Zhi-Hong Liu, Jun-Hui Yuan
E-mail: keyajiao@whut.edu.cn;54181880@qq.com;yuanjh90@163.com
|
Cite this article:
Jin-Ling Yan(闫金铃), Xing-Yu Wang(王星雨), Gen-Ping Wu(吴根平), Hao Wang(王浩), Ya-Jiao Ke(柯亚娇), Jiafu Wang(王嘉赋), Zhi-Hong Liu(刘志宏), and Jun-Hui Yuan(袁俊辉) Two-dimensional kagome semiconductor Sc6S5X6 (X = Cl, Br, I) with trilayer kagome lattice 2026 Chin. Phys. B 35 027102
|
[1] Zhang G, Wu H, Jin W, Yang L, Xiao B, Yu J, Zhang W and Chang H 2025 Cell Rep. Phys. Sci. 6 102356 [2] Liu A, Zhang X, Liu Z, Li Y, Peng X, Li X, Qin Y, Hu C, Qiu Y, Jiang H, Wang Y, Li Y, Tang J, Liu J, Guo H, Deng T, Peng S, Tian H and Ren T L 2024 Nano-Micro Lett. 16 119 [3] Tong L, Peng Z, Lin R, Li Z, Wang Y, Huang X, Xue K H, Xu H, Liu F, Xia H, Wang P, Xu M, Xiong W, Hu W, Xu J, Zhang X, Ye L and Miao X 2021 Science 373 1353 [4] Du L 2024 Nat. Rev. Phys. 6 157 [5] Shuck C E, Xiao X and Wang Z 2024 Acc. Chem. Res. 57 3079 [6] Wilson N P, Yao W, Shan J and Xu X 2021 Nature 599 383 [7] Zhou Y and Zhao L 2017 Adv. Mater. 29 1702676 [8] Wang Q, Lei H, Qi Y and Felser C 2024 Acc. Mater. Res. 5 786 [9] Li S 2025 Chinese Phys. Lett. 42 070716 [10] Mendels P, Bert F, De VriesMA, Olariu A, Harrison A, Duc F, Trombe J C, Lord J S, Amato A and Baines C 2007 Phys. Rev. Lett. 98 077204 [11] Yin J X, Lian B and Hasan M Z 2022 Nature 612 647 [12] Jiang K, Wu T, Yin J X, Wang Z, Hasan M Z, Wilson S D, Chen X and Hu J 2022 Natl. Sci. Rev. nwac199 [13] Jiang H C, Devereaux T and Kivelson S A 2017 Phys. Rev. Lett. 119 067002 [14] Xu X, Yin J X, Qu Z and Jia S 2023 Rep. Prog. Phys. 86 114502 [15] Chen H, Hu B, Ye Y, Yang H and Gao H J 2022 Chin. Phys. B 31 097405 [16] Ye J, Lin Y,Wang H, Song Z, Feng J, XieWand Jia S 2024 Chin. Phys. B 33 057103 [17] Zhou H, Liu H, Ji H, Li X, Meng S and Sun J T 2023 npj Quantum Mater. 8 16 [18] Regmi S, Fernando T, Zhao Y, Sakhya A P, Dhakal G, Bin Elius I, Vazquez H, Denlinger J D, Yang J, Chu J H, Xu X, Cao T and Neupane M 2022 Commun. Mater. 3 100 [19] Lu J, Chen H, Zhao X, Hu G, Yuan X and Ren J 2024 Appl. Phys. Lett. 124 072101 [20] Li Y, Liu C, Zhao G D, Hu T and Ren W 2021 Phys. Rev. B 104 L060405 [21] You J Y and Feng Y P 2023 Mater. Today Chem. 30 101566 [22] Wang H and Yang L 2024 J. Phys. Chem. Lett. 15 8689 [23] Wang R,Wang C, Li R, Guo D, Dai J, Zong C, ZhangWand JiW2025 Chin. Phys. B 34 046801 [24] Huang S, Xie Y, Zhong C and Chen Y 2018 J. Phys. Chem. Lett. 9 2751 [25] Li J, Wang X T, Chen Y Q, Wei Y H, Yuan H K and Tian C L 2024 Phys. Chem. Chem. Phys. 26 3092 [26] Wu D, Lv H, Zhuo Z, Li X,Wu X and Yang J 2021 J. Phys. Chem. Lett. 12 3528 [27] Zhang B, Deng F, Chen X, Lv X and Wang J 2022 J. Phys.: Condens. Matter 34 475702 [28] Park S, Kang S, Kim H, Lee K H, Kim P, Sim S, Lee N, Karuppannan B, Kim J, Kim J, Sim K I, Coak M J, Noda Y, Park C H, Kim J H and Park J G 2020 Sci. Rep. 10 20998 [29] Zhu Y, Yuan J H and Wang J 2025 Phys. B Cond. Matt. 700 416894 [30] Zhu Y, Yuan J H and Wang J 2025 Appl. Surf. Sci. 709 163829 [31] Zhu Y, Yuan J H, Fang W Y, Sun Z G and Wang J 2023 Appl. Surf. Sci. 636 157817 [32] Yan J L,Wang X Y, Chen L, Yuan J H, Ke Y J andWang J 2025 Mater. Today Commun. 48 113650 [33] Blöchl P E 1994 Phys. Rev. B 50 17953 [34] Kresse G and Joubert D 1999 Phys. Rev. B 59 1758 [35] Kresse G and Furthmüller J 1996 Comput. Mater. Sci. 6 15 [36] Kresse G and Furthmüller J 1996 Phys. Rev. B 54 11169 [37] Perdew J P, Burke K and Ernzerhof M 1996 Phys. Rev. Lett. 77 3865 [38] Nelson R, Ertural C, George J, Deringer V L, Hautier G and Dronskowski R 2020 J. Comput. Chem. 41 1931 [39] Togo A and Tanaka I 2015 Scripta Mater. 108 1 [40] Wang V, Xu N, Liu J C, Tang G and Geng W T 2021 Comput. Phys. Commun. 267 108033 [41] BornMand Huang K 1996 Dynamical Theory of Crystal Lattices (New York: Oxford University Press) [42] Li T 2012 Phys. Rev. B 85 235407 [43] Liu F, Ming P and Li J 2007 Phys. Rev. B 76 064120 [44] Yuan J, Yu N, Xue K and Miao X 2017 RSC Adv. 7 8654 [45] Noury S, Krokidis X, Fuster F and Silvi B 1999 Comput. Chem. 23 597 [46] Tang W, Sanville E and Henkelman G 2009 J. Phys. Condens. Matter 21 084204 [47] Mao G Q, Yan Z Y, Xue K H, Ai Z, Yang S, Cui H, Yuan J H, Ren T L and Miao X 2022 J. Phys.: Condens. Matter 34 403001 [48] Yang S, Xue K H and Miao X 2025 J. Phys.: Condens. Matter 37 233001 [49] Yuan J H, Chen Q, Fonseca L R C, Xu M, Xue K H and Miao X S 2018 J. Phys. Commun. 2 105005 [50] Xue K H, Yuan J H, Fonseca L R C and Miao X S 2018 Comput. Mater. Sci. 153 493 [51] Bardeen J and Shockley W 1950 Phys. Rev. 80 72 [52] Lang H, Zhang S and Liu Z 2016 Phys. Rev. B 94 235306 |
| No Suggested Reading articles found! |
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
Altmetric
|
|
blogs
Facebook pages
Wikipedia page
Google+ users
|
Online attention
Altmetric calculates a score based on the online attention an article receives. Each coloured thread in the circle represents a different type of online attention. The number in the centre is the Altmetric score. Social media and mainstream news media are the main sources that calculate the score. Reference managers such as Mendeley are also tracked but do not contribute to the score. Older articles often score higher because they have had more time to get noticed. To account for this, Altmetric has included the context data for other articles of a similar age.
View more on Altmetrics
|
|
|