Please wait a minute...
Chin. Phys. B, 2026, Vol. 35(2): 024302    DOI: 10.1088/1674-1056/ae0895
ELECTROMAGNETISM, OPTICS, ACOUSTICS, HEAT TRANSFER, CLASSICAL MECHANICS, AND FLUID DYNAMICS Prev   Next  

Design and analysis of a flip-chip architecture for SAW-DQD strong coupling

Yi-Bo Wang(王奕博)1,2,3,4, Xiang-Xiang Song(宋骧骧)1,2,3,4, Zhuo-Zhi Zhang(张拙之)1,2,3,4,†, and Guo-Ping Guo(郭国平)1,2,3,4,5
1 Key Laboratory of Quantum Information, University of Science and Technology of China, Hefei 230026, China;
2 Suzhou Institute for Advanced Research, University of Science and Technology of China, Suzhou 215123, China;
3 CAS Center for Excellence in Quantum Information and Quantum Physics, University of Science and Technology of China, Hefei 230026, China;
4 Anhui Province Key Laboratory of Quantum Network, University of Science and Technology of China, Hefei 230026, China;
5 Origin Quantum Computing Company Limited, Hefei 230088, China
Abstract  Surface acoustic wave (SAW) resonators offer distinct advantages for coupling to semiconductor qubits, including low loss, high stability, and compatibility with magnetic fields. However, the integration of SAW resonators with double quantum dots (DQDs) that host charge and spin qubits remains largely unexplored. In this work, we propose a flip-chip architecture that enables three-dimensional integration of a semiconductor DQD with a SAW resonator. Taking experimental feasibility into account, we estimate the coupling strength between a DQD and a SAW resonator. The results suggest that the strong coupling regime can be reached in our design. This study provides theoretical insight and practical guidance for experimental exploration of phonon-electron coupling in hybrid SAW-DQD quantum systems.
Keywords:  surface acoustic wave resonator      double quantum dot      3D integration      strong coupling  
Received:  14 July 2025      Revised:  17 September 2025      Accepted manuscript online:  18 September 2025
PACS:  43.35.Pt (Surface waves in solids and liquids)  
  43.58.Kr (Spectrum and frequency analyzers and filters; acoustical and electrical oscillographs; photoacoustic spectrometers; acoustical delay lines and resonators)  
  68.65.Hb (Quantum dots (patterned in quantum wells))  
  03.67.Lx (Quantum computation architectures and implementations)  
Fund: This project was supported by the National Natural Science Foundation of China (Grant Nos. 12274401, 12274397, and 12034018), the National Key Research and Development Program of China (Grant No. 2022YFA1405900), and the Natural Science Foundation of Jiangsu Province (Grant No. BK20240123).

Cite this article: 

Yi-Bo Wang(王奕博), Xiang-Xiang Song(宋骧骧), Zhuo-Zhi Zhang(张拙之), and Guo-Ping Guo(郭国平) Design and analysis of a flip-chip architecture for SAW-DQD strong coupling 2026 Chin. Phys. B 35 024302

[1] Morgan D 2007 Surface Acoustic Wave Filters: With Applications to Electronic Communications and Signal Processing (Oxford: Elsevier Science)
[2] Bell D L T and Li R C M 1976 Proc. IEEE 64 711
[3] Shao L, Zhu D, Colangelo M, Lee D, Sinclair N, Hu Y, Rakich P T, Lai K, Berggren K K and Loncar M 2022 Nat. Electron. 5 348
[4] Hackett L, Miller M, Brimigion F, Dominguez D, Peake G, TaukePedretti A, Arterburn S, Friedmann T A and Eichenfield M 2021 Nat. Commun. 12 2769
[5] Maines J D and Paige E G S 1976 Proc. IEEE 64 639
[6] Mayor F M, Jiang W, Sarabalis C J, McKenna T P, Witmer J D and Safavi-Naeini A H 2021 Phys. Rev. Appl. 15 014039
[7] Hackett L, Miller M, Weatherred S, Arterburn S, Storey M J, Peake G, Dominguez D, Finnegan P S, Friedmann T A and Eichenfield M 2023 Nat. Electron. 6 76
[8] Li B, Lin Q and Li M 2023 Nature 620 316
[9] Kim Y, Suh J M, Shin J, Liu Y, Yeon H, Qiao K, Kum H S, Kim C, Lee H E, Choi C, Kim H, Lee D, Lee J, Kang J H, Park B I, Kang S, Kim J, Kim S, Perozek J A, Wang K, Park Y, Kishen K, Kong L, Palacios T, Park J, Park M C, Kim H J, Lee Y S, Lee K, Bae S H, Kong W, Han J and Kim J 2022 Science 377 859
[10] Okuda S, Ono T, Kanai Y, Ikuta T, Shimatani M, Ogawa S, Maehashi K, Inoue K and Matsumoto K 2018 ACS Sens. 3 200
[11] Manenti R, Peterer M J, Nersisyan A, Magnusson E B, Patterson A and Leek P J 2016 Phys. Rev. B 93 041411
[12] Emser A L, Rose B C, Sletten L R, Aramburu Sanchez P and Lehnert K W 2022 Appl. Phys. Lett. 121 224001
[13] Andersson G, Suri B, Guo L, Aref T and Delsing P 2019 Nat. Phys. 15 1123
[14] Bienfait A, Satzinger K J, Zhong Y P, Chang H S, Chou M H, Conner C R, Dumur E, Grebel J, Peairs G A, Povey R G and Cleland A N 2019 Science 364 368
[15] Maity S, Shao L, Bogdanovic S, Meesala S, Sohn Y I, Sinclair N, Pin- gault B, Chalupnik M, Chia C, Zheng L, Lai K and Loncar M 2020 Nat. Commun. 11 193
[16] Bolgar A N, Zotova J I, Kirichenko D D, Besedin I S, Semenov A V, Shaikhaidarov R S and Astafiev O V 2018 Phys. Rev. Lett. 120 223603
[17] Ruan X H, Li L, Liang G H, Zhao S L, Wang J H, Bu Y Z, Chen B J, Song X H, Li X, Zhang H, Wang J Z, Zhao Q C, Xu K, Fan H, Liu Y X, Zhang J, Peng Z H, Xiang Z C and Zheng D N 2024 Appl. Phys. Lett. 125 052603
[18] Chen J F, He X L, Gao W P, Liu X Y, Niu Z Q, Liu K, Peng W, Wang Z and Lin Z R 2025 Appl. Phys. Lett. 126 144001
[19] Andersson G, Jolin S W, Scigliuzzo M, Borgani R, Tholen M O, Rivera Hernandez J C, Shumeiko V, Haviland D B and Delsing P 2022 PRX Quantum 3 010312
[20] Qiao H, Dumur E, Andersson G, Yan H, Chou M H, Grebel J, Conner C R, Joshi Y J, Miller J M, Povey R G, Wu X and Cleland A N 2023 Science 380 1030
[21] Burkard G, Ladd T D, Pan A, Nichol J M and Petta J R 2023 Rev. Mod. Phys. 95 025003
[22] Zajac D M, Hazard T M, Mi X, Nielsen E and Petta J R 2016 Phys. Rev. Appl. 6 054013
[23] Cao G, Li H O, Tu T, Wang L, Zhou C, Xiao M, Guo G C, Jiang H W and Guo G P 2013 Nat. Commun. 4 1401
[24] Neyens S, Zietz O K, Watson T F, Luthi F, Nethwewala A, George H C, Henry E, Islam M, Wagner A J, Borjans F, Connors E J, Corrigan J, Curry M J, Keith D, Kotlyar R, Lampert L F, Małdzik M T, Millard K, Mohiyaddin F A, Pellerano S, Pillarisetty R, Ramsey M, Savytskyy R, Schaal S, Zheng G, Ziegler J, Bishop N C, Bojarski S, Roberts J and Clarke J S 2024 Nature 629 80
[25] Han Lim W, Tanttu T, Youn T, Huang J Y, Serrano S, Dickie A, Yianni S, Hudson F E, Escott C C, Yang C H, Laucht A, Saraiva A, Chan K W, Cifuentes J D and Dzurak A S 2025 Nano Lett. 25 10263
[26] Huang J Y, Su R Y, Lim W H, Feng M, van Straaten B, Severin B, Gilbert W, Dumoulin Stuyck N, Tanttu T, Serrano S, Cifuentes J D, Hansen I, Seedhouse A E, Vahapoglu E, Leon R C C, Abrosimov N V, Pohl H J, Thewalt M L W, Hudson F E, Escott C C, Ares N, Bartlett S D, Morello A, Saraiva A, Laucht A, Dzurak A S and Yang C H 2024 Nature 627 772
[27] Camenzind L C, Geyer S, Fuhrer A, Warburton R J, Zumbuhl D M and Kuhlmann A V 2022 Nat. Electron. 5 178
[28] Hermelin S, Takada S, Yamamoto M, Tarucha S, Wieck A D, Saminadayar L, Bauerle C and Meunier T 2011 Nature 477 435
[29] McNeil R P G, Kataoka M, Ford C J B, Barnes C H W, Anderson D, Jones G A C, Farrer I and Ritchie D A 2011 Nature 477 439
[30] Jadot B, Mortemousque P A, Chanrion E, Thiney V, Ludwig A, Wieck A D, Urdampilleta M, Bauerle C and Meunier T 2021 Nat. Nanotechnol. 16 570
[31] Schuetz M J A, Kessler E M, Giedke G, Vandersypen L M K, Lukin M D and Cirac J I 2015 Phys. Rev. X 5 031031
[32] Naber W J M, Fujisawa T, Liu H W and van der Wiel W G 2006 Phys. Rev. Lett. 96 136807
[33] Zwanenburg F A, Dzurak A S, Morello A, Simmons M Y, Hollenberg L C L, Klimeck G, Rogge S, Coppersmith S N and Eriksson M A 2013 Rev. Mod. Phys. 85 961
[34] Kornich V, Kloeffel C and Loss D 2014 Phys. Rev. B 89 085410
[35] Satzinger K J, Conner C R, Bienfait A, Chang H S, Chou M H, Cleland A Y, Dumur E, Grebel J, Peairs G A, Povey R G, Whiteley S J, Zhong Y P, Awschalom D D, Schuster D I and Cleland A N 2019 Appl. Phys. Lett. 114 173501
[36] Gao J, Shen L, Li H, Ye S, Li J, Xu X, Cui J, Gao Y, Huang R and Ye L 2023 IEEE International Solid-State Circuits Conference (ISSCC), Feb. 19-23, 2023, San Francisco, United States of America, pp. 346- 348
[37] Rosenberg D, Kim D, Das R, Yost D, Gustavsson S, Hover D, Krantz P, Melville A, Racz L, Samach G O, Weber S J, Yan F, Yoder J L, Kerman A J and Oliver W D 2017 npj Quantum Inf. 3 42
[38] Foxen B, Mutus J Y, Lucero E, Graff R, Megrant A, Chen Y, Quintana C, Burkett B, Kelly J, Jeffrey E, Yang Y, Yu A, Arya K, Barends R, Chen Z, Chiaro B, Dunsworth A, Fowler A, Gidney C, Giustina M, Huang T, Klimov P, Neeley M, Neill C, Roushan P, Sank D, Vainsencher A, Wenner J, White T C and Martinis J M 2018 Quantum Sci. Technol. 3 014005
[39] Simon S H 1996 Phys. Rev. B 54 13878
[40] Blais A, Grimsmo A L, Girvin S M and Wallraff A 2021 Rev. Mod. Phys. 93 025005
[41] Gopalan V, Dierolf V and Scrymgeour D A 2007 Annu. Rev. Mater. Res. 37 449
[42] Mi X, Cady J V, Zajac D M, Deelman P W and Petta J R 2017 Science 355 156
[43] Childress L, Sørensen A S and Lukin M D 2004 Phys. Rev. A 69 042302
[44] Zhang X, Hu R Z, Li H O, Jing F M, Zhou Y, Ma R L, Ni M, Luo G, Cao G, Wang G L, Hu X, Jiang H W, Guo G C and Guo G P 2020 Phys. Rev. Lett. 124 257701
[45] Samkharadze N, Zheng G, Kalhor N, Brousse D, Sammak A, Mendes U C, Blais A, Scappucci G and Vandersypen L M K 2018 Science 359 1123
[46] Yu C X, Zihlmann S, Abadillo-Uriel J C, Michal V P, Rambal N, Niebojewski H, Bedecarrats T, Vinet M, Dumur E, Filippone M, Bertrand B, De Franceschi S, Niquet Y M and Maurand R 2023 Nat. Nanotechnol. 18 741
[47] Mi X, Benito M, Putz S, Zajac D M, Taylor J M, Burkard G and Petta J R 2018 Nature 555 599
[48] Borjans F, Croot X G, Mi X, Gullans M J and Petta J R 2020 Nature 577 195
[49] Wang K, Xu G, Gao F, Liu H, Ma R L, Zhang X, Wang Z N, Cao G, Wang T, Zhang J J, Culcer D, Hu X D, Jiang H W, Li H O, Guo G C and Guo G P 2022 Nat. Commun. 13 206
[50] Wang N, Kang J M, Lu W L, Wang S M, Wang Y J, Li H O, Cao G, Wang B C and Guo G P 2024 Nano Lett. 24 13126
[51] Zhang Z Z, Hu Q T, Song X X, Ying Y, Li H O, Zhang Z and Guo G P 2020 Adv. Mater. 32 2005625
[52] Chu N, Zhu S K, Li A R, Wang C, Liao W Z, Cao G, Li H O and Guo G P 2025 Chin. Phys. B 34 040303
[53] Gu S S, Kohler S, Xu Y Q, Wu R, Jiang S L, Ye S K, Lin T, Wang B C, Li H O, Cao G and Guo G P 2023 Phys. Rev. Lett. 130 233602
[54] Lin T, Gu S S, Xu Y Q, Jiang S L, Ye S K, Wang B C, Li H O, Guo G C, Zou C L, Hu X D, Cao G and Guo G P 2023 Nano Lett. 23 4176
[55] Qin G Q, Jing F M, Hao T Y, Jiang S L, Zhang Z Z, Cao G, Song X X and Guo G P 2025 Phys. Rev. Lett. 134 036301
[56] Jing F M, Zhang Z Z, Qin G Q, Luo G, Cao G, Li H O, Song X X and Guo G P 2022 Adv. Quantum Technol. 5 2100162
[57] Jing F M, Qin G Q, Zhang Z Z, Song X X and Guo G P 2023 Appl. Phys. Lett. 123 184001
[58] Jing F M, Shen Z X, Qin G Q, Zhang W K, Lin T, Cai R, Zhang Z Z, Cao G, He L X, Song X X and Guo G P 2025 Phys. Rev. Appl. 23 044053
[59] Banszerus L, Moller S, Hecker K, Icking E, Watanabe K, Taniguchi T, Hassler F, Volk C and Stampfer C 2023 Nature 618 51
[60] Denisov A O, Reckova V, Cances S, Ruckriegel M J, Masseroni M, Adam C, Tong C, Gerber J D, Huang W W, Watanabe K, Taniguchi T, Ihn T, Ensslin K and Duprez H 2025 Nat. Nanotechnol. 20 494
[61] Zhang Z Z, Song X X, Luo G, Deng G W, Mosallanejad V, Taniguchi T, Watanabe K, Li H O, Cao G, Guo G C, Nori F and Guo G P 2017 Sci. Adv. 3 e1701699
[62] Kumar P, Kim H, Tripathy S, Watanabe K, Taniguchi T, Novoselov K S and Kotekar-Patil D 2023 Nanoscale 15 18203
[63] Wang Y B, Zhang Z Z, Wu C X, Zhang Y S, Lei G S, Song X X and Guo G P 2025 Chin. Phys. Lett. 42 070803
[64] Novoselov K S, Geim A K, Morozov S V, Jiang D, Katsnelson M I, Grigorieva I V, Dubonos S V and Firsov A A 2005 Nature 438 197
[65] Blees M K, Barnard A W, Rose P A, Roberts S P, McGill K L, Huang P Y, Ruyack A R, Kevek J W, Kobrin B, Muller D A and McEuen P L 2015 Nature 524 204
[66] Fang Y, Xu Y, Kang K, Davaji B, Watanabe K, Taniguchi T, Lal A, Mak K F, Shan J and Ramshaw B J 2023 Phys. Rev. Lett. 130 246201
[67] Mou Y C, Wang J Y, Chen H N, Xia Y C, Li H L, Yan Q, Jiang X, Wu Y J, Shi W, Jiang H, Xie X C and Zhang C 2025 Phys. Rev. Lett. 134 096301
[68] Cao X Y, Jia Z H, Mou Y C, Zhang S H, Yang J S, Zhang Y D, Dai W J, Gu J M, Chen H N, Qian L, Jiang C, Xie X Y, Zhou Z Q, Yan J Y, Jiang H, Watanabe K, Taniguchi T, Dong S M, Xie X C, Zhang C and Xiu F X 2025 Nano Lett. 25 9535
[69] Qin G Q, Wang Y B, Lei G S, Zhang Z Z, Song X X and Guo G P 2025 Chin. Phys. B 34 018801
[1] Quantitative determination of modal photon number density spectrum in arbitrary dielectric structures with a quantum emitter
Li-Heng Chen(陈立恒), Fengfeng Luo(罗凤凤), and Yonggui Gao(高勇贵). Chin. Phys. B, 2025, 34(4): 044204.
[2] Controlling coupled magnons with pumps
Fan Yang(杨帆), Chenxiao Wang(王辰笑), Zhijian Chen(陈志坚), Kaixin Zhao(赵恺欣), Weihao Liu(刘炜豪), Shuhuan Ma(马舒寰), Chunke Wei(魏纯可), Jiantao Song(宋剑涛), Jinwei Rao(饶金威), and Bimu Yao(姚碧霂). Chin. Phys. B, 2025, 34(10): 107508.
[3] Coupling and characterization of a Si/SiGe triple quantum dot array with a microwave resonator
Shun-Li Jiang(江顺利), Tian-Yi Jiang(蒋天翼), Yong-Qiang Xu(徐永强), Rui Wu(吴睿), Tian-Yue Hao(郝天岳), Shu-Kun Ye(叶澍坤), Ran-Ran Cai(蔡冉冉), Bao-Chuan Wang(王保传), Hai-Ou Li(李海欧), Gang Cao(曹刚), and Guo-Ping Guo(郭国平). Chin. Phys. B, 2024, 33(9): 090311.
[4] Delayed response to the photovoltaic performance in a double quantum dots photocell with spatially correlated fluctuation
Sheng-Nan Zhu(祝胜男), Shun-Cai Zhao(赵顺才), Lu-Xin Xu(许路昕), and Lin-Jie Chen(陈林杰). Chin. Phys. B, 2023, 32(5): 057302.
[5] Phase- and spin-dependent manipulation of leakage of Majorana mode into double quantum dot
Fu-Bin Yang(羊富彬), Gan Ren(任淦), and Lin-Guo Xie(谢林果). Chin. Phys. B, 2021, 30(7): 078505.
[6] Enhanced circular dichroism of plasmonic system in the strong coupling regime
Yun-Fei Zou(邹云飞) and Li Yu(于丽). Chin. Phys. B, 2021, 30(4): 047304.
[7] Electron transfer properties of double quantum dot system in a fluctuating environment
Lujing Jiang(姜露静), Kang Lan(蓝康), Zhenyu Lin(林振宇), and Yanhui Zhang(张延惠). Chin. Phys. B, 2021, 30(4): 040307.
[8] Micro-scale photon source in a hybrid cQED system
Ming-Bo Chen(陈明博), Bao-Chuan Wang(王保传), Si-Si Gu(顾思思), Ting Lin(林霆), Hai-Ou Li(李海欧), Gang Cao(曹刚), and Guo-Ping Guo(郭国平). Chin. Phys. B, 2021, 30(4): 048507.
[9] Optical strong coupling in hybrid metal-graphene metamaterial for terahertz sensing
Ling Xu(徐玲), Yun Shen(沈云), Liangliang Gu(顾亮亮), Yin Li(李寅), Xiaohua Deng(邓晓华), Zhifu Wei(魏之傅), Jianwei Xu(徐建伟), and Juncheng Cao(曹俊诚). Chin. Phys. B, 2021, 30(11): 118702.
[10] Fluctuation theorem for entropy production at strong coupling
Y Y Xu(徐酉阳), J Liu(刘娟), M Feng(冯芒). Chin. Phys. B, 2020, 29(1): 010501.
[11] Annealing-enhanced interlayer coupling interaction inGaS/MoS2 heterojunctions
Xiuqing Meng(孟秀清), Shulin Chen(陈书林), Yunzhang Fang(方允樟), Jianlong Kou(寇建龙). Chin. Phys. B, 2019, 28(7): 078101.
[12] Strong coupling in silver-molecular J-aggregates-silver structure sandwiched between two dielectric media
Kunwei Pang(庞昆维), Haihong Li(李海红), Gang Song(宋钢), Li Yu(于丽). Chin. Phys. B, 2019, 28(12): 127301.
[13] Room-temperature strong coupling between dipolar plasmon resonance in single gold nanorod and two-dimensional excitons in monolayer WSe2
Jinxiu Wen(温锦秀), Hao Wang(汪浩), Huanjun Chen(陈焕君), Shaozhi Deng(邓少芝), Ningsheng Xu(许宁生). Chin. Phys. B, 2018, 27(9): 096101.
[14] An analytical variational method for the biased quantum Rabi model in the ultra-strong coupling regime
Bin-Bin Mao(毛斌斌), Maoxin Liu(刘卯鑫), Wei Wu(吴威), Liangsheng Li(李粮生), Zu-Jian Ying(应祖建), Hong-Gang Luo(罗洪刚). Chin. Phys. B, 2018, 27(5): 054219.
[15] Cavity optomechanics: Manipulating photons and phonons towards the single-photon strong coupling
Yu-long Liu(刘玉龙), Chong Wang(王冲), Jing Zhang(张靖), Yu-xi Liu(刘玉玺). Chin. Phys. B, 2018, 27(2): 024204.
No Suggested Reading articles found!