| ELECTROMAGNETISM, OPTICS, ACOUSTICS, HEAT TRANSFER, CLASSICAL MECHANICS, AND FLUID DYNAMICS |
Prev
Next
|
|
|
Design and analysis of a flip-chip architecture for SAW-DQD strong coupling |
| Yi-Bo Wang(王奕博)1,2,3,4, Xiang-Xiang Song(宋骧骧)1,2,3,4, Zhuo-Zhi Zhang(张拙之)1,2,3,4,†, and Guo-Ping Guo(郭国平)1,2,3,4,5 |
1 Key Laboratory of Quantum Information, University of Science and Technology of China, Hefei 230026, China; 2 Suzhou Institute for Advanced Research, University of Science and Technology of China, Suzhou 215123, China; 3 CAS Center for Excellence in Quantum Information and Quantum Physics, University of Science and Technology of China, Hefei 230026, China; 4 Anhui Province Key Laboratory of Quantum Network, University of Science and Technology of China, Hefei 230026, China; 5 Origin Quantum Computing Company Limited, Hefei 230088, China |
|
|
|
|
Abstract Surface acoustic wave (SAW) resonators offer distinct advantages for coupling to semiconductor qubits, including low loss, high stability, and compatibility with magnetic fields. However, the integration of SAW resonators with double quantum dots (DQDs) that host charge and spin qubits remains largely unexplored. In this work, we propose a flip-chip architecture that enables three-dimensional integration of a semiconductor DQD with a SAW resonator. Taking experimental feasibility into account, we estimate the coupling strength between a DQD and a SAW resonator. The results suggest that the strong coupling regime can be reached in our design. This study provides theoretical insight and practical guidance for experimental exploration of phonon-electron coupling in hybrid SAW-DQD quantum systems.
|
Received: 14 July 2025
Revised: 17 September 2025
Accepted manuscript online: 18 September 2025
|
|
PACS:
|
43.35.Pt
|
(Surface waves in solids and liquids)
|
| |
43.58.Kr
|
(Spectrum and frequency analyzers and filters; acoustical and electrical oscillographs; photoacoustic spectrometers; acoustical delay lines and resonators)
|
| |
68.65.Hb
|
(Quantum dots (patterned in quantum wells))
|
| |
03.67.Lx
|
(Quantum computation architectures and implementations)
|
|
| Fund: This project was supported by the National Natural Science Foundation of China (Grant Nos. 12274401, 12274397, and 12034018), the National Key Research and Development Program of China (Grant No. 2022YFA1405900), and the Natural Science Foundation of Jiangsu Province (Grant No. BK20240123). |
Cite this article:
Yi-Bo Wang(王奕博), Xiang-Xiang Song(宋骧骧), Zhuo-Zhi Zhang(张拙之), and Guo-Ping Guo(郭国平) Design and analysis of a flip-chip architecture for SAW-DQD strong coupling 2026 Chin. Phys. B 35 024302
|
[1] Morgan D 2007 Surface Acoustic Wave Filters: With Applications to Electronic Communications and Signal Processing (Oxford: Elsevier Science) [2] Bell D L T and Li R C M 1976 Proc. IEEE 64 711 [3] Shao L, Zhu D, Colangelo M, Lee D, Sinclair N, Hu Y, Rakich P T, Lai K, Berggren K K and Loncar M 2022 Nat. Electron. 5 348 [4] Hackett L, Miller M, Brimigion F, Dominguez D, Peake G, TaukePedretti A, Arterburn S, Friedmann T A and Eichenfield M 2021 Nat. Commun. 12 2769 [5] Maines J D and Paige E G S 1976 Proc. IEEE 64 639 [6] Mayor F M, Jiang W, Sarabalis C J, McKenna T P, Witmer J D and Safavi-Naeini A H 2021 Phys. Rev. Appl. 15 014039 [7] Hackett L, Miller M, Weatherred S, Arterburn S, Storey M J, Peake G, Dominguez D, Finnegan P S, Friedmann T A and Eichenfield M 2023 Nat. Electron. 6 76 [8] Li B, Lin Q and Li M 2023 Nature 620 316 [9] Kim Y, Suh J M, Shin J, Liu Y, Yeon H, Qiao K, Kum H S, Kim C, Lee H E, Choi C, Kim H, Lee D, Lee J, Kang J H, Park B I, Kang S, Kim J, Kim S, Perozek J A, Wang K, Park Y, Kishen K, Kong L, Palacios T, Park J, Park M C, Kim H J, Lee Y S, Lee K, Bae S H, Kong W, Han J and Kim J 2022 Science 377 859 [10] Okuda S, Ono T, Kanai Y, Ikuta T, Shimatani M, Ogawa S, Maehashi K, Inoue K and Matsumoto K 2018 ACS Sens. 3 200 [11] Manenti R, Peterer M J, Nersisyan A, Magnusson E B, Patterson A and Leek P J 2016 Phys. Rev. B 93 041411 [12] Emser A L, Rose B C, Sletten L R, Aramburu Sanchez P and Lehnert K W 2022 Appl. Phys. Lett. 121 224001 [13] Andersson G, Suri B, Guo L, Aref T and Delsing P 2019 Nat. Phys. 15 1123 [14] Bienfait A, Satzinger K J, Zhong Y P, Chang H S, Chou M H, Conner C R, Dumur E, Grebel J, Peairs G A, Povey R G and Cleland A N 2019 Science 364 368 [15] Maity S, Shao L, Bogdanovic S, Meesala S, Sohn Y I, Sinclair N, Pin- gault B, Chalupnik M, Chia C, Zheng L, Lai K and Loncar M 2020 Nat. Commun. 11 193 [16] Bolgar A N, Zotova J I, Kirichenko D D, Besedin I S, Semenov A V, Shaikhaidarov R S and Astafiev O V 2018 Phys. Rev. Lett. 120 223603 [17] Ruan X H, Li L, Liang G H, Zhao S L, Wang J H, Bu Y Z, Chen B J, Song X H, Li X, Zhang H, Wang J Z, Zhao Q C, Xu K, Fan H, Liu Y X, Zhang J, Peng Z H, Xiang Z C and Zheng D N 2024 Appl. Phys. Lett. 125 052603 [18] Chen J F, He X L, Gao W P, Liu X Y, Niu Z Q, Liu K, Peng W, Wang Z and Lin Z R 2025 Appl. Phys. Lett. 126 144001 [19] Andersson G, Jolin S W, Scigliuzzo M, Borgani R, Tholen M O, Rivera Hernandez J C, Shumeiko V, Haviland D B and Delsing P 2022 PRX Quantum 3 010312 [20] Qiao H, Dumur E, Andersson G, Yan H, Chou M H, Grebel J, Conner C R, Joshi Y J, Miller J M, Povey R G, Wu X and Cleland A N 2023 Science 380 1030 [21] Burkard G, Ladd T D, Pan A, Nichol J M and Petta J R 2023 Rev. Mod. Phys. 95 025003 [22] Zajac D M, Hazard T M, Mi X, Nielsen E and Petta J R 2016 Phys. Rev. Appl. 6 054013 [23] Cao G, Li H O, Tu T, Wang L, Zhou C, Xiao M, Guo G C, Jiang H W and Guo G P 2013 Nat. Commun. 4 1401 [24] Neyens S, Zietz O K, Watson T F, Luthi F, Nethwewala A, George H C, Henry E, Islam M, Wagner A J, Borjans F, Connors E J, Corrigan J, Curry M J, Keith D, Kotlyar R, Lampert L F, Małdzik M T, Millard K, Mohiyaddin F A, Pellerano S, Pillarisetty R, Ramsey M, Savytskyy R, Schaal S, Zheng G, Ziegler J, Bishop N C, Bojarski S, Roberts J and Clarke J S 2024 Nature 629 80 [25] Han Lim W, Tanttu T, Youn T, Huang J Y, Serrano S, Dickie A, Yianni S, Hudson F E, Escott C C, Yang C H, Laucht A, Saraiva A, Chan K W, Cifuentes J D and Dzurak A S 2025 Nano Lett. 25 10263 [26] Huang J Y, Su R Y, Lim W H, Feng M, van Straaten B, Severin B, Gilbert W, Dumoulin Stuyck N, Tanttu T, Serrano S, Cifuentes J D, Hansen I, Seedhouse A E, Vahapoglu E, Leon R C C, Abrosimov N V, Pohl H J, Thewalt M L W, Hudson F E, Escott C C, Ares N, Bartlett S D, Morello A, Saraiva A, Laucht A, Dzurak A S and Yang C H 2024 Nature 627 772 [27] Camenzind L C, Geyer S, Fuhrer A, Warburton R J, Zumbuhl D M and Kuhlmann A V 2022 Nat. Electron. 5 178 [28] Hermelin S, Takada S, Yamamoto M, Tarucha S, Wieck A D, Saminadayar L, Bauerle C and Meunier T 2011 Nature 477 435 [29] McNeil R P G, Kataoka M, Ford C J B, Barnes C H W, Anderson D, Jones G A C, Farrer I and Ritchie D A 2011 Nature 477 439 [30] Jadot B, Mortemousque P A, Chanrion E, Thiney V, Ludwig A, Wieck A D, Urdampilleta M, Bauerle C and Meunier T 2021 Nat. Nanotechnol. 16 570 [31] Schuetz M J A, Kessler E M, Giedke G, Vandersypen L M K, Lukin M D and Cirac J I 2015 Phys. Rev. X 5 031031 [32] Naber W J M, Fujisawa T, Liu H W and van der Wiel W G 2006 Phys. Rev. Lett. 96 136807 [33] Zwanenburg F A, Dzurak A S, Morello A, Simmons M Y, Hollenberg L C L, Klimeck G, Rogge S, Coppersmith S N and Eriksson M A 2013 Rev. Mod. Phys. 85 961 [34] Kornich V, Kloeffel C and Loss D 2014 Phys. Rev. B 89 085410 [35] Satzinger K J, Conner C R, Bienfait A, Chang H S, Chou M H, Cleland A Y, Dumur E, Grebel J, Peairs G A, Povey R G, Whiteley S J, Zhong Y P, Awschalom D D, Schuster D I and Cleland A N 2019 Appl. Phys. Lett. 114 173501 [36] Gao J, Shen L, Li H, Ye S, Li J, Xu X, Cui J, Gao Y, Huang R and Ye L 2023 IEEE International Solid-State Circuits Conference (ISSCC), Feb. 19-23, 2023, San Francisco, United States of America, pp. 346- 348 [37] Rosenberg D, Kim D, Das R, Yost D, Gustavsson S, Hover D, Krantz P, Melville A, Racz L, Samach G O, Weber S J, Yan F, Yoder J L, Kerman A J and Oliver W D 2017 npj Quantum Inf. 3 42 [38] Foxen B, Mutus J Y, Lucero E, Graff R, Megrant A, Chen Y, Quintana C, Burkett B, Kelly J, Jeffrey E, Yang Y, Yu A, Arya K, Barends R, Chen Z, Chiaro B, Dunsworth A, Fowler A, Gidney C, Giustina M, Huang T, Klimov P, Neeley M, Neill C, Roushan P, Sank D, Vainsencher A, Wenner J, White T C and Martinis J M 2018 Quantum Sci. Technol. 3 014005 [39] Simon S H 1996 Phys. Rev. B 54 13878 [40] Blais A, Grimsmo A L, Girvin S M and Wallraff A 2021 Rev. Mod. Phys. 93 025005 [41] Gopalan V, Dierolf V and Scrymgeour D A 2007 Annu. Rev. Mater. Res. 37 449 [42] Mi X, Cady J V, Zajac D M, Deelman P W and Petta J R 2017 Science 355 156 [43] Childress L, Sørensen A S and Lukin M D 2004 Phys. Rev. A 69 042302 [44] Zhang X, Hu R Z, Li H O, Jing F M, Zhou Y, Ma R L, Ni M, Luo G, Cao G, Wang G L, Hu X, Jiang H W, Guo G C and Guo G P 2020 Phys. Rev. Lett. 124 257701 [45] Samkharadze N, Zheng G, Kalhor N, Brousse D, Sammak A, Mendes U C, Blais A, Scappucci G and Vandersypen L M K 2018 Science 359 1123 [46] Yu C X, Zihlmann S, Abadillo-Uriel J C, Michal V P, Rambal N, Niebojewski H, Bedecarrats T, Vinet M, Dumur E, Filippone M, Bertrand B, De Franceschi S, Niquet Y M and Maurand R 2023 Nat. Nanotechnol. 18 741 [47] Mi X, Benito M, Putz S, Zajac D M, Taylor J M, Burkard G and Petta J R 2018 Nature 555 599 [48] Borjans F, Croot X G, Mi X, Gullans M J and Petta J R 2020 Nature 577 195 [49] Wang K, Xu G, Gao F, Liu H, Ma R L, Zhang X, Wang Z N, Cao G, Wang T, Zhang J J, Culcer D, Hu X D, Jiang H W, Li H O, Guo G C and Guo G P 2022 Nat. Commun. 13 206 [50] Wang N, Kang J M, Lu W L, Wang S M, Wang Y J, Li H O, Cao G, Wang B C and Guo G P 2024 Nano Lett. 24 13126 [51] Zhang Z Z, Hu Q T, Song X X, Ying Y, Li H O, Zhang Z and Guo G P 2020 Adv. Mater. 32 2005625 [52] Chu N, Zhu S K, Li A R, Wang C, Liao W Z, Cao G, Li H O and Guo G P 2025 Chin. Phys. B 34 040303 [53] Gu S S, Kohler S, Xu Y Q, Wu R, Jiang S L, Ye S K, Lin T, Wang B C, Li H O, Cao G and Guo G P 2023 Phys. Rev. Lett. 130 233602 [54] Lin T, Gu S S, Xu Y Q, Jiang S L, Ye S K, Wang B C, Li H O, Guo G C, Zou C L, Hu X D, Cao G and Guo G P 2023 Nano Lett. 23 4176 [55] Qin G Q, Jing F M, Hao T Y, Jiang S L, Zhang Z Z, Cao G, Song X X and Guo G P 2025 Phys. Rev. Lett. 134 036301 [56] Jing F M, Zhang Z Z, Qin G Q, Luo G, Cao G, Li H O, Song X X and Guo G P 2022 Adv. Quantum Technol. 5 2100162 [57] Jing F M, Qin G Q, Zhang Z Z, Song X X and Guo G P 2023 Appl. Phys. Lett. 123 184001 [58] Jing F M, Shen Z X, Qin G Q, Zhang W K, Lin T, Cai R, Zhang Z Z, Cao G, He L X, Song X X and Guo G P 2025 Phys. Rev. Appl. 23 044053 [59] Banszerus L, Moller S, Hecker K, Icking E, Watanabe K, Taniguchi T, Hassler F, Volk C and Stampfer C 2023 Nature 618 51 [60] Denisov A O, Reckova V, Cances S, Ruckriegel M J, Masseroni M, Adam C, Tong C, Gerber J D, Huang W W, Watanabe K, Taniguchi T, Ihn T, Ensslin K and Duprez H 2025 Nat. Nanotechnol. 20 494 [61] Zhang Z Z, Song X X, Luo G, Deng G W, Mosallanejad V, Taniguchi T, Watanabe K, Li H O, Cao G, Guo G C, Nori F and Guo G P 2017 Sci. Adv. 3 e1701699 [62] Kumar P, Kim H, Tripathy S, Watanabe K, Taniguchi T, Novoselov K S and Kotekar-Patil D 2023 Nanoscale 15 18203 [63] Wang Y B, Zhang Z Z, Wu C X, Zhang Y S, Lei G S, Song X X and Guo G P 2025 Chin. Phys. Lett. 42 070803 [64] Novoselov K S, Geim A K, Morozov S V, Jiang D, Katsnelson M I, Grigorieva I V, Dubonos S V and Firsov A A 2005 Nature 438 197 [65] Blees M K, Barnard A W, Rose P A, Roberts S P, McGill K L, Huang P Y, Ruyack A R, Kevek J W, Kobrin B, Muller D A and McEuen P L 2015 Nature 524 204 [66] Fang Y, Xu Y, Kang K, Davaji B, Watanabe K, Taniguchi T, Lal A, Mak K F, Shan J and Ramshaw B J 2023 Phys. Rev. Lett. 130 246201 [67] Mou Y C, Wang J Y, Chen H N, Xia Y C, Li H L, Yan Q, Jiang X, Wu Y J, Shi W, Jiang H, Xie X C and Zhang C 2025 Phys. Rev. Lett. 134 096301 [68] Cao X Y, Jia Z H, Mou Y C, Zhang S H, Yang J S, Zhang Y D, Dai W J, Gu J M, Chen H N, Qian L, Jiang C, Xie X Y, Zhou Z Q, Yan J Y, Jiang H, Watanabe K, Taniguchi T, Dong S M, Xie X C, Zhang C and Xiu F X 2025 Nano Lett. 25 9535 [69] Qin G Q, Wang Y B, Lei G S, Zhang Z Z, Song X X and Guo G P 2025 Chin. Phys. B 34 018801 |
| No Suggested Reading articles found! |
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
Altmetric
|
|
blogs
Facebook pages
Wikipedia page
Google+ users
|
Online attention
Altmetric calculates a score based on the online attention an article receives. Each coloured thread in the circle represents a different type of online attention. The number in the centre is the Altmetric score. Social media and mainstream news media are the main sources that calculate the score. Reference managers such as Mendeley are also tracked but do not contribute to the score. Older articles often score higher because they have had more time to get noticed. To account for this, Altmetric has included the context data for other articles of a similar age.
View more on Altmetrics
|
|
|