Please wait a minute...
Chin. Phys. B, 2026, Vol. 35(2): 027101    DOI: 10.1088/1674-1056/ae1c27
SPECIAL TOPIC — Moiré physics in two-dimensional materials Prev  

Charge-transfer-induced re-entrant ferromagnetism in twisted-bilayer-MoTe2/hBN/WSe2

Shaozheng Wang(王绍政)1,†, Xumin Chang(常旭敏)1,†, Feng Liu(刘峰)1, Yuchen Zheng(郑宇辰)3, Juncai Wu(吴俊才)3, Tong Zheng(郑桐)3, Kenji Watanabe4, Takashi Taniguchi4, and Shengwei Jiang(姜生伟)1,2,5,‡
1 State Key Laboratory of Micro-nano Engineering Science, School of Physics and Astronomy, Shanghai Jiao Tong University, Shanghai 200240, China;
2 Key Laboratory of Artificial Structures and Quantum Control (Ministry of Education), School of Physics and Astronomy, Shanghai Jiao Tong University, Shanghai 200240, China;
3 Zhiyuan College, Shanghai Jiao Tong University, Shanghai 200240, China;
4 National Institute for Materials Science, 1-1 Namiki, Tsukuba 305-0044, Japan;
5 Tsung-Dao Lee Institute, Shanghai Jiao Tong University, Shanghai 201210, China
Abstract  Ferromagnetism in moiré flat-band systems has been extensively studied in the first valence miniband of twisted MoTe$_2$, while its controlled realization at higher moiré fillings remains largely unexplored, except for very recent works reporting correlated magnetism near half filling of the second moiré band. Here, we investigate rhombohedral-stacked twisted MoTe$_2$/hBN/WSe$_2$ heterostructures and uncover two distinct ferromagnetic (FM) regions: one centered near ${v}_{\rm h} \approx 3$ (half filling of the second moiré valence miniband) at zero displacement field, and a re-entrant FM phase that emerges for ${v}_{\rm h} > 3$ only under a finite out-of-plane electric field. These FM regions are separated by a narrow filling window with a strongly suppressed magnetic circular dichroism (MCD) response. Layer-sensitive exciton spectroscopy identifies that WSe$_2$ is hole-doped in the re-entrant FM region, consistent with partial charge transfer from MoTe$_2$ to WSe$_2$. We propose that electric-field-induced layer repopulation stabilizes the re-entrant ferromagnetic phase by pinning the effective MoTe$_2$ filling near ${v}_{\rm h} \approx 3$ while adding carriers to the remote WSe$_2$ layer. Our results demonstrate that remote-layer population control is an effective tuning knob for magnetic ordering in higher moiré minibands, extending the design space for correlated spin-valley phases in transition metal dichalcogenide heterostructures.
Keywords:  moiré superlattice      ferromagnetism      magneto-optical spectroscopy  
Received:  17 September 2025      Revised:  29 October 2025      Accepted manuscript online:  06 November 2025
PACS:  71.35.-y (Excitons and related phenomena)  
  75.70.Tj (Spin-orbit effects)  
  78.20.Ls (Magneto-optical effects)  
Fund: We thank Prof. Yang Zhang for fruitful discussions. This work was supported by the National Key R&D Program of China (Grant Nos. 2021YFA1400100 and 2021YFA1401400), the National Natural Science Foundation of China (Grant Nos. 12550403, 12174250 and 12141404), and the Shanghai Jiao Tong University 2030 Initiative Program B (Grant No. WH510207202). K.W. and T.T. acknowledge support from JSPS KAKENHI (Grant Nos. 21H05233 and 23H02052) and the World Premier International Research Center Initiative (WPI), MEXT, Japan. Device fabrication was supported by the Micro-Nano Fabrication Platform of the School of Physics and Astronomy at Shanghai Jiao Tong University.
Corresponding Authors:  Shengwei Jiang     E-mail:  swjiang@sjtu.edu.cn

Cite this article: 

Shaozheng Wang(王绍政), Xumin Chang(常旭敏), Feng Liu(刘峰), Yuchen Zheng(郑宇辰), Juncai Wu(吴俊才), Tong Zheng(郑桐), Kenji Watanabe, Takashi Taniguchi, and Shengwei Jiang(姜生伟) Charge-transfer-induced re-entrant ferromagnetism in twisted-bilayer-MoTe2/hBN/WSe2 2026 Chin. Phys. B 35 027101

[1] Kennes D M, Claassen M, Xian L, Georges A, Millis A J, Hone J, Dean C R, Basov D N, Pasupathy A N and Rubio A 2021 Nat. Phys. 17 155
[2] Mak K F and Shan J 2022 Nat. Nanotechnol. 17 686
[3] Andrei E Y, Efetov D K, Jarillo-Herrero P, MacDonald A H, Mak K F, Senthil T, Tutuc E, Yazdani A and Young A F 2021 Nat. Rev. Mater. 6 201
[4] Cai J, Anderson E, Wang C, et al. 2023 Nature 622 63
[5] Zeng Y, Xia Z, Kang K, Zhu J, Knüppel P, Vaswani C, Watanabe K, Taniguchi T, Mak K F and Shan J 2023 Nature 622 69
[6] Park H, Cai J, Anderson E, et al. 2023 Nature 622 74
[7] Xu F, Sun Z, Jia T, Liu C, Xu C, Li C, Gu Y,Watanabe K, Taniguchi T, Tong B, Jia J, Shi Z, Jiang S, Zhang Y, Liu X and Li T 2023 Phys. Rev. X 13 031037
[8] Lu Z, Han T, Yao Y, Reddy A P, Yang J, Seo J, Watanabe K, Taniguchi T, Fu L and Ju L 2024 Nature 626 759
[9] Redekop E, Zhang C, Park H, et al. 2024 Nature 635 584
[10] Ji Z, Park H, Barber M E, Hu C, Watanabe K, Taniguchi T, Chu J H, Xu X and Shen Z X 2024 Nature 635 578
[11] Kang K, Shen B, Qiu Y, Zeng Y, Xia Z,Watanabe K, Taniguchi T, Shan J and Mak K F 2024 Nature 628 522
[12] Xie J, Huo Z, Lu X, Feng Z, Zhang Z, Wang W, Yang Q, Watanabe K, Taniguchi T, Liu K, Song Z, Xie X C, Liu J and Lu X 2025 Nat. Mater. 24 1042
[13] Choi Y, Choi Y, Valentini M, Patterson C L, Holleis L F W, Sheekey O I, Stoyanov H, Cheng X, Taniguchi T, Watanabe K and Young A F 2025 Nature 639 342
[14] Lu Z, Han T, Yao Y, Hadjri Z, Yang J, Seo J, Shi L, Ye S, Watanabe K, Taniguchi T and Ju L 2025 Nature 637 1090
[15] Xu F, Chang X, Xiao J, Zhang Y, Liu F, Sun Z, Mao N, Peshcherenko N, Li J, Watanabe K, Taniguchi T, Tong B, Lu L, Jia J, Qian D, Shi Z, Zhang Y, Liu X, Jiang S and Li T 2025 Nat. Phys. 21 542
[16] Park H, Cai J, Anderson E, et al. 2025 Nat. Phys. 21 549
[17] An L, Pan H, Qiu W X, et al. 2025 Nat. Commun. 16
[18] Xu C, Mao N, Zeng T and Zhang Y 2025 Phys. Rev. Lett. 134 066601
[19] Reddy A P, Paul N, Abouelkomsan A and Fu L 2024 Phys. Rev. Lett. 133 166503
[20] Sodemann V I 2024 Phys. Rev. B 110 045114
[21] Wang C, Zhang X W, Liu X, Wang J, Cao T and Xiao D 2025 Phys. Rev. Lett. 134 076503
[22] Zhang Y H 2024 Phys. Rev. B 110 155102
[23] May-Mann J, Stern A and Devakul T 2025 Phys. Rev. B 111 L201111
[24] Jian C M, Cheng M and Xu C 2025 Phys. Rev. X 15 021063
[25] Li T, Jiang S, Shen B, Zhang Y, Li L, Tao Z, Devakul T, Watanabe K, Taniguchi T, Fu L, Shan J and Mak K F 2021 Nature 600 641
[26] Raja A, Chaves A, Yu J, Arefe G, Hill H M, Rigosi A F, Berkelbach T C, Nagler P, Schüller C, Korn T, Nuckolls C, Hone J, Brus L E, Heinz T F, Reichman D R and Chernikov A 2017 Nat. Commun. 8
[27] Xu Y, Liu S, Rhodes D A, Watanabe K, Taniguchi T, Hone J, Elser V, Mak K F and Shan J 2020 Nature 587 214
[28] Popert A, Shimazaki Y, Kroner M, Watanabe K, Taniguchi T, Imamoglu A and Smoleński T 2022 Nano Lett. 22 7363
[29] Gu J, Zhu J, Knuppel P, Watanabe K, Taniguchi T, Shan J and Mak K F 2024 Nat. Mater. 23 219
[30] Zhang Z, Regan E C, Wang D, et al. 2022 Nat. Phys. 18 1214
[31] Anderson E, Fan F R, Cai J, Holtzmann W, Taniguchi T, Watanabe K, Xiao D, Yao W and Xu X 2023 Science 381 325
[32] Tang Y, Li L, Li T, Xu Y, Liu S, Barmak K, Watanabe K, Taniguchi T, MacDonald A H, Shan J and Mak K F 2020 Nature 579 353
[33] Ciorciaro L, Smoleński T, Morera I, K et al. 2023 Nature 623 509
[34] Tao Z, Zhao W, Shen B, Li T, Knüppel P, Watanabe K, Taniguchi T, Shan J and Mak K F 2024 Nat. Phys. 20 783
[1] Three-dimensional flat bands and possible interlayer triplet pairing superconductivity in the alternating twisted NbSe2 moiré bulk
Shuang Liu(刘爽), Peng Chen(陈鹏), and Shihao Zhang(张世豪). Chin. Phys. B, 2026, 35(2): 026801.
[2] Anomalous Hall effect and Lifshitz transition in Fe3Sn2 nanosheets
Xue Yang(杨雪), Jijian Liu(刘继健), Xinyi Zheng(郑新义), Lei Xu(徐磊), Lihong Hu(胡利洪), Sicheng Zhou(周思成), Siyuan Zhou(周思远), Ximing Zhang(张栖铭), Bingbing Tong(仝冰冰), Jie Shen(沈洁), Zhaozheng Lyu(吕昭征), Xiunian Jing(景秀年), Fanming Qu(屈凡明), Peiling Li(李沛岭), Jiadong Zhou(周家东), Guangtong Liu(刘广同), and Li Lü(吕力). Chin. Phys. B, 2026, 35(1): 017503.
[3] Doping-induced magnetic and topological transitions in Mn2X2Te5 (X = Bi, Sb) bilayers
Wei Chen(陈威), Chuhan Tang(唐楚涵), Chao-Fei Liu(刘超飞), and Mingxing Chen(陈明星). Chin. Phys. B, 2025, 34(9): 097304.
[4] Complex magnetic and transport properties of EuBi2 single crystal
Ping Su(苏平), Hui Liang(梁慧), Yi-Ran Li(李祎冉), Huan Wang(王欢), Na Li(李娜), Kai-Yuan Hu(胡开源), Ying Zhou(周颖), Dan-Dan Wu(吴丹丹), Yan Sun(孙燕), Qiu-Ju Li(李秋菊), Jin-Jin Hong(洪锦锦), Xia Zhao(赵霞), Xue-Feng Sun(孙学峰), and Yi-Yan Wang(王义炎). Chin. Phys. B, 2025, 34(6): 067503.
[5] Robustness of ferromagnetism in van der Waals magnet Fe3GeTe2 to hydrostatic pressure
Yonglin Wang(王涌霖), Xu-Tao Zeng(曾旭涛), Bo Li(李博), Cheng Su(宿程), Takanori Hattori, Xian-Lei Sheng(胜献雷), and Wentao Jin(金文涛). Chin. Phys. B, 2025, 34(4): 046203.
[6] Quantum anomalous Hall effect in twisted bilayer graphene
Wen-Xiao Wang(王文晓), Yi-Wen Liu(刘亦文), and Lin He(何林). Chin. Phys. B, 2025, 34(4): 047301.
[7] Fabrication of two-dimensional van der Waals moiré superlattices
Zihao Wan(万子豪), Chao Wang(王超), Hang Zheng(郑航), Wenna Tang(唐文娜), Zihao Fu(付梓豪), Weilin Liu(刘伟林), Zhenjia Zhou(周振佳), Jun Li(李骏), Guowen Yuan(袁国文), and Libo Gao(高力波). Chin. Phys. B, 2025, 34(4): 047302.
[8] Emergence of metal-semiconductor phase transition in MX2(M = Ni, Pd, Pt; X = S, Se, Te) moiré superlattices
Jie Li(李杰), Rui-Zi Zhang(张瑞梓), Jinbo Pan(潘金波), Ping Chen(陈平), and Shixuan Du(杜世萱). Chin. Phys. B, 2025, 34(3): 037302.
[9] NaBH4 induces strong ferromagnetism of Bi2Fe4O9 at room temperature
Chong Wang(王冲), Guorong Liu(刘国荣), Xiaofeng Sun(孙小峰), Jinyuan Ma(马金元), Tao Xian(县涛), and Hua Yang(杨华). Chin. Phys. B, 2025, 34(12): 127503.
[10] Simultaneous control of ferromagnetism and ferroelasticity by oxygen octahedral backbone stretching
Genhao Liang(梁根豪), Hui Cao(曹慧), Long Cheng(成龙), Junkun Zha(查君坤), Mingrui Bao(保明睿), Fei Ye(叶飞), Hua Zhou(周华), Aidi Zhao(赵爱迪), and Xiaofang Zhai(翟晓芳). Chin. Phys. B, 2024, 33(9): 097101.
[11] Evolution of anomalous Hall effect in ferromagnetic Weyl semimetal NbxZr1-xCo2Sn
Bo-Wen Chen(陈博文) and Bing Shen(沈冰). Chin. Phys. B, 2024, 33(8): 087501.
[12] Semiclassical approach to spin dynamics of a ferromagnetic S=1 chain
Chengchen Li(李承晨), Yi Cui(崔祎), Weiqiang Yu(于伟强), and Rong Yu(俞榕). Chin. Phys. B, 2024, 33(6): 067501.
[13] Coexistence of antiferromagnetism and unconventional superconductivity in a quasi-one-dimensional flat-band system: Creutz lattice
Feng Xu(徐峰) and Lei Zhang(张磊). Chin. Phys. B, 2024, 33(3): 037402.
[14] Angular and planar transport properties of antiferromagnetic V5S8
Xiao-Kai Wu(吴晓凯), Bin Wang(王彬), De-Tong Wu(吴德桐), Bo-Wen Chen(陈博文), Meng-Juan Mi(弭孟娟), Yi-Lin Wang(王以林), and Bing Shen(沈冰). Chin. Phys. B, 2024, 33(2): 027503.
[15] Strain-modulated antiferromagnetic Chern insulator in NiOsCl6 monolayer
Bin Wu(武斌), Na Li(李娜), Xin-Lian Chen(陈新莲), Wei-Xiao Ji(纪维霄), Pei-Ji Wang(王培吉), Shu-Feng Zhang(张树峰), and Chang-Wen Zhang(张昌文). Chin. Phys. B, 2024, 33(12): 127301.
No Suggested Reading articles found!