| SPECIAL TOPIC — Moiré physics in two-dimensional materials |
Prev
|
|
|
Charge-transfer-induced re-entrant ferromagnetism in twisted-bilayer-MoTe2/hBN/WSe2 |
| Shaozheng Wang(王绍政)1,†, Xumin Chang(常旭敏)1,†, Feng Liu(刘峰)1, Yuchen Zheng(郑宇辰)3, Juncai Wu(吴俊才)3, Tong Zheng(郑桐)3, Kenji Watanabe4, Takashi Taniguchi4, and Shengwei Jiang(姜生伟)1,2,5,‡ |
1 State Key Laboratory of Micro-nano Engineering Science, School of Physics and Astronomy, Shanghai Jiao Tong University, Shanghai 200240, China; 2 Key Laboratory of Artificial Structures and Quantum Control (Ministry of Education), School of Physics and Astronomy, Shanghai Jiao Tong University, Shanghai 200240, China; 3 Zhiyuan College, Shanghai Jiao Tong University, Shanghai 200240, China; 4 National Institute for Materials Science, 1-1 Namiki, Tsukuba 305-0044, Japan; 5 Tsung-Dao Lee Institute, Shanghai Jiao Tong University, Shanghai 201210, China |
|
|
|
|
Abstract Ferromagnetism in moiré flat-band systems has been extensively studied in the first valence miniband of twisted MoTe$_2$, while its controlled realization at higher moiré fillings remains largely unexplored, except for very recent works reporting correlated magnetism near half filling of the second moiré band. Here, we investigate rhombohedral-stacked twisted MoTe$_2$/hBN/WSe$_2$ heterostructures and uncover two distinct ferromagnetic (FM) regions: one centered near ${v}_{\rm h} \approx 3$ (half filling of the second moiré valence miniband) at zero displacement field, and a re-entrant FM phase that emerges for ${v}_{\rm h} > 3$ only under a finite out-of-plane electric field. These FM regions are separated by a narrow filling window with a strongly suppressed magnetic circular dichroism (MCD) response. Layer-sensitive exciton spectroscopy identifies that WSe$_2$ is hole-doped in the re-entrant FM region, consistent with partial charge transfer from MoTe$_2$ to WSe$_2$. We propose that electric-field-induced layer repopulation stabilizes the re-entrant ferromagnetic phase by pinning the effective MoTe$_2$ filling near ${v}_{\rm h} \approx 3$ while adding carriers to the remote WSe$_2$ layer. Our results demonstrate that remote-layer population control is an effective tuning knob for magnetic ordering in higher moiré minibands, extending the design space for correlated spin-valley phases in transition metal dichalcogenide heterostructures.
|
Received: 17 September 2025
Revised: 29 October 2025
Accepted manuscript online: 06 November 2025
|
|
PACS:
|
71.35.-y
|
(Excitons and related phenomena)
|
| |
75.70.Tj
|
(Spin-orbit effects)
|
| |
78.20.Ls
|
(Magneto-optical effects)
|
|
| Fund: We thank Prof. Yang Zhang for fruitful discussions. This work was supported by the National Key R&D Program of China (Grant Nos. 2021YFA1400100 and 2021YFA1401400), the National Natural Science Foundation of China (Grant Nos. 12550403, 12174250 and 12141404), and the Shanghai Jiao Tong University 2030 Initiative Program B (Grant No. WH510207202). K.W. and T.T. acknowledge support from JSPS KAKENHI (Grant Nos. 21H05233 and 23H02052) and the World Premier International Research Center Initiative (WPI), MEXT, Japan. Device fabrication was supported by the Micro-Nano Fabrication Platform of the School of Physics and Astronomy at Shanghai Jiao Tong University. |
Corresponding Authors:
Shengwei Jiang
E-mail: swjiang@sjtu.edu.cn
|
Cite this article:
Shaozheng Wang(王绍政), Xumin Chang(常旭敏), Feng Liu(刘峰), Yuchen Zheng(郑宇辰), Juncai Wu(吴俊才), Tong Zheng(郑桐), Kenji Watanabe, Takashi Taniguchi, and Shengwei Jiang(姜生伟) Charge-transfer-induced re-entrant ferromagnetism in twisted-bilayer-MoTe2/hBN/WSe2 2026 Chin. Phys. B 35 027101
|
[1] Kennes D M, Claassen M, Xian L, Georges A, Millis A J, Hone J, Dean C R, Basov D N, Pasupathy A N and Rubio A 2021 Nat. Phys. 17 155 [2] Mak K F and Shan J 2022 Nat. Nanotechnol. 17 686 [3] Andrei E Y, Efetov D K, Jarillo-Herrero P, MacDonald A H, Mak K F, Senthil T, Tutuc E, Yazdani A and Young A F 2021 Nat. Rev. Mater. 6 201 [4] Cai J, Anderson E, Wang C, et al. 2023 Nature 622 63 [5] Zeng Y, Xia Z, Kang K, Zhu J, Knüppel P, Vaswani C, Watanabe K, Taniguchi T, Mak K F and Shan J 2023 Nature 622 69 [6] Park H, Cai J, Anderson E, et al. 2023 Nature 622 74 [7] Xu F, Sun Z, Jia T, Liu C, Xu C, Li C, Gu Y,Watanabe K, Taniguchi T, Tong B, Jia J, Shi Z, Jiang S, Zhang Y, Liu X and Li T 2023 Phys. Rev. X 13 031037 [8] Lu Z, Han T, Yao Y, Reddy A P, Yang J, Seo J, Watanabe K, Taniguchi T, Fu L and Ju L 2024 Nature 626 759 [9] Redekop E, Zhang C, Park H, et al. 2024 Nature 635 584 [10] Ji Z, Park H, Barber M E, Hu C, Watanabe K, Taniguchi T, Chu J H, Xu X and Shen Z X 2024 Nature 635 578 [11] Kang K, Shen B, Qiu Y, Zeng Y, Xia Z,Watanabe K, Taniguchi T, Shan J and Mak K F 2024 Nature 628 522 [12] Xie J, Huo Z, Lu X, Feng Z, Zhang Z, Wang W, Yang Q, Watanabe K, Taniguchi T, Liu K, Song Z, Xie X C, Liu J and Lu X 2025 Nat. Mater. 24 1042 [13] Choi Y, Choi Y, Valentini M, Patterson C L, Holleis L F W, Sheekey O I, Stoyanov H, Cheng X, Taniguchi T, Watanabe K and Young A F 2025 Nature 639 342 [14] Lu Z, Han T, Yao Y, Hadjri Z, Yang J, Seo J, Shi L, Ye S, Watanabe K, Taniguchi T and Ju L 2025 Nature 637 1090 [15] Xu F, Chang X, Xiao J, Zhang Y, Liu F, Sun Z, Mao N, Peshcherenko N, Li J, Watanabe K, Taniguchi T, Tong B, Lu L, Jia J, Qian D, Shi Z, Zhang Y, Liu X, Jiang S and Li T 2025 Nat. Phys. 21 542 [16] Park H, Cai J, Anderson E, et al. 2025 Nat. Phys. 21 549 [17] An L, Pan H, Qiu W X, et al. 2025 Nat. Commun. 16 [18] Xu C, Mao N, Zeng T and Zhang Y 2025 Phys. Rev. Lett. 134 066601 [19] Reddy A P, Paul N, Abouelkomsan A and Fu L 2024 Phys. Rev. Lett. 133 166503 [20] Sodemann V I 2024 Phys. Rev. B 110 045114 [21] Wang C, Zhang X W, Liu X, Wang J, Cao T and Xiao D 2025 Phys. Rev. Lett. 134 076503 [22] Zhang Y H 2024 Phys. Rev. B 110 155102 [23] May-Mann J, Stern A and Devakul T 2025 Phys. Rev. B 111 L201111 [24] Jian C M, Cheng M and Xu C 2025 Phys. Rev. X 15 021063 [25] Li T, Jiang S, Shen B, Zhang Y, Li L, Tao Z, Devakul T, Watanabe K, Taniguchi T, Fu L, Shan J and Mak K F 2021 Nature 600 641 [26] Raja A, Chaves A, Yu J, Arefe G, Hill H M, Rigosi A F, Berkelbach T C, Nagler P, Schüller C, Korn T, Nuckolls C, Hone J, Brus L E, Heinz T F, Reichman D R and Chernikov A 2017 Nat. Commun. 8 [27] Xu Y, Liu S, Rhodes D A, Watanabe K, Taniguchi T, Hone J, Elser V, Mak K F and Shan J 2020 Nature 587 214 [28] Popert A, Shimazaki Y, Kroner M, Watanabe K, Taniguchi T, Imamoglu A and Smoleński T 2022 Nano Lett. 22 7363 [29] Gu J, Zhu J, Knuppel P, Watanabe K, Taniguchi T, Shan J and Mak K F 2024 Nat. Mater. 23 219 [30] Zhang Z, Regan E C, Wang D, et al. 2022 Nat. Phys. 18 1214 [31] Anderson E, Fan F R, Cai J, Holtzmann W, Taniguchi T, Watanabe K, Xiao D, Yao W and Xu X 2023 Science 381 325 [32] Tang Y, Li L, Li T, Xu Y, Liu S, Barmak K, Watanabe K, Taniguchi T, MacDonald A H, Shan J and Mak K F 2020 Nature 579 353 [33] Ciorciaro L, Smoleński T, Morera I, K et al. 2023 Nature 623 509 [34] Tao Z, Zhao W, Shen B, Li T, Knüppel P, Watanabe K, Taniguchi T, Shan J and Mak K F 2024 Nat. Phys. 20 783 |
| No Suggested Reading articles found! |
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
Altmetric
|
|
blogs
Facebook pages
Wikipedia page
Google+ users
|
Online attention
Altmetric calculates a score based on the online attention an article receives. Each coloured thread in the circle represents a different type of online attention. The number in the centre is the Altmetric score. Social media and mainstream news media are the main sources that calculate the score. Reference managers such as Mendeley are also tracked but do not contribute to the score. Older articles often score higher because they have had more time to get noticed. To account for this, Altmetric has included the context data for other articles of a similar age.
View more on Altmetrics
|
|
|