Please wait a minute...
Chin. Phys. B, 2026, Vol. 35(2): 024204    DOI: 10.1088/1674-1056/adeb5f
ELECTROMAGNETISM, OPTICS, ACOUSTICS, HEAT TRANSFER, CLASSICAL MECHANICS, AND FLUID DYNAMICS Prev   Next  

Decoherence and evolution of a general quadratic state for amplitude decay

Zhi-Long Wan(万志龙)1,†, Hong-Chun Yuan(袁洪春)1,2, Xiao-Lei Yin(尹晓蕾)1, and Chang-Ying Wang(王昌英)1
1 School of Sciences, Changzhou Institute of Technology, Changzhou 213032, China;
2 School of Electrical and Information Engineering, Changzhou Institute of Technology, Changzhou 213032, China
Abstract  Making full use of the operator ordering method and the integration within ordered products, we obtain the analytical evolution law of a general quadratic state in the amplitude decay channel, and find that it is determined not only by the decay rate of the amplitude decay channel but also by the coefficients of the initial quadratic state. Further, the quantum statistical properties of the initial quadratic state for amplitude decay are investigated via its average photon number and photon-counting distribution, and its Wigner distribution function evolution is discussed in detail.
Keywords:  general quadratic state      amplitude decay channel      quantum statistical property      operator ordering      integration within ordered products  
Received:  03 May 2025      Revised:  24 June 2025      Accepted manuscript online:  03 July 2025
PACS:  03.65.Yz (Decoherence; open systems; quantum statistical methods)  
  05.30.-d (Quantum statistical mechanics)  
  42.50.Dv (Quantum state engineering and measurements)  
Corresponding Authors:  Zhi-Long Wan     E-mail:  wanzl@czu.cn

Cite this article: 

Zhi-Long Wan(万志龙), Hong-Chun Yuan(袁洪春), Xiao-Lei Yin(尹晓蕾), and Chang-Ying Wang(王昌英) Decoherence and evolution of a general quadratic state for amplitude decay 2026 Chin. Phys. B 35 024204

[1] Breuer H and Petruccione F 2002 The Theory of open quantum systems (Oxford: Oxford University Press)
[2] Li S W, Yang L P and Sun C P 2014 Eur. Phys. J. D 68 45
[3] Schleich W P 2001 Quantum Optics in Phase Space (Berlin: Wiley VCH)
[4] Gardner C W and Zoller P 2000 Quantum Noise (Berlin: Spinger)
[5] Bonifacio R and Lugiato L A 1982 Dissipative Systems in Quantum Optics: Resonance Fluorescence, Optical Bistability, Superfluorescence (Berlin: Springer)
[6] Carmichael H J 1999 Statistical Methods in Quantum Optics 1: Master Equations and Fokker-Planck Equations (Berlin: Springer-Verlag) pp. 89–94
[7] Fan H Y and Hu L Y 2008 Mod. Phys. Lett. B 22 2435
[8] Meng X G, Goan X S,Wang J S and Zhang R 2018 Opt. Commun. 411 15
[9] Meng X G, Wang J S, Liang B L and Han C X 2018 Front. Phys. 13 130322
[10] Meng X G, Liang B L, Liu J M and Zhou X C 2025 Front. Phys. 20 022205
[11] Li S W, Yang L P and Sun C P 2014 Eur. Phys. J. D 68 45
[12] Mehta C L 1961 Phys. Rev. Lett. 18 752
[13] Zhang W M, Feng D H and Gilmore R 1990 Rev. Mod. Phys. 62 867
[14] Robert D and Combescure M 2021 Coherent States and Applications In Mathematical Physics (Swizerland: Springer)
[15] Zhang Y Y and Wang Y X 2025 Chin. Phys. B 34 094206
[16] Wu W F, Fang Y and Fu P 2025 Chin. Phys. B 33 094202
[17] Zhang K, Li L L and Fan H Y 2024 Chin. Phys. B 33 060307
[18] Fan H Y 2003 J. Opt. B: Quantum Seciclass. Opt. 5 R147
[19] Meng X G, Li K C, Wang J S, Zhang X Y, Zhang Z T, Yang Z S and Liang B L 2020 Ann. Phys. (Berlin) 532 1900585
[20] Fan H Y 2004 Int. J. Mod. Phys. B 18 1387
[21] Fan H Y 1991 Phys. Lett. A 161 1
[22] Meng X G, Li K C, Wang J S, Yang Z S, Zhang X Y, Zhang Z T and Liang B L 2020 Front. Phys. 15 52501
[23] Kelley P L and Kleiner W H 1964 Phys. Rev. 136 A316
[24] Fan H Y and Hu L Y 2008 Opt. Lett. 33 443
[25] Meng X G, Wang J S, Zhang X Y, Yang Z S, Liang B L and Zhang Z T 2020 Ann. Phys. (Berlin) 532 2000219
[26] Guo Y, Zhang X, Du Q P, Yang Z S and Li J P 2023 J. Liaocheng Univ. (Nat. Sci. Ed.) 36 39
[27] Zhang J D and Wang S 2024 J. Liaocheng Univ. (Nat. Sci. Ed.) 37 23
[28] Chen X M, Chen P Y and Wang C 2025 Chin. Phys. B 34 044201
[29] Yang D R, Li L Y, Zhang N and Yu H Y 2025 Chin. Phys. B 34 017301
[1] Entropy evolution law of a general linear state for diffusion noise
Yingyu Zhang(张映玉) and Yixing Wang(王依兴). Chin. Phys. B, 2025, 34(9): 094206.
[2] Wigner function for squeezed negative binomial state and evolution of density operator for amplitude decay
Heng-Yun Lv(吕恒云), Ji-Suo Wang(王继锁), Xiao-Yan Zhang(张晓燕), Meng-Yan Wu(吴孟艳), Bao-Long Liang(梁宝龙), Xiang-Guo Meng(孟祥国). Chin. Phys. B, 2019, 28(9): 090302.
[3] Mutual transformations between the P–Q,Q–P, and generalized Weyl ordering of operators
Xu Xing-Lei (徐兴磊), Li Hong-Qi (李洪奇), Fan Hong-Yi (范洪义). Chin. Phys. B, 2014, 23(3): 030305.
[4] A generalized Weyl–Wigner quantization scheme unifying PQ and QP ordering and Weyl ordering of operators
Wang Ji-Suo(王继锁), Fan Hong-Yi(范洪义), and Meng Xiang-Guo(孟祥国) . Chin. Phys. B, 2012, 21(6): 064204.
No Suggested Reading articles found!