Please wait a minute...
Chin. Phys. B, 2026, Vol. 35(2): 024202    DOI: 10.1088/1674-1056/adf03f
ELECTROMAGNETISM, OPTICS, ACOUSTICS, HEAT TRANSFER, CLASSICAL MECHANICS, AND FLUID DYNAMICS Prev   Next  

Design of a compact wide-field-of-view infrared imager based on wavefront coding

Chonghui Zhu(朱崇辉), Jiaqian Yu(于佳倩), and Jingang Cui(崔金刚)
Northeast Forestry University, Faculty of Science, Harbin 150040, China
Abstract  Compact size, high brightness, and wide field of view (FOV) are key requirements for long-wave infrared imagers used in military surveillance or night navigation. However, to meet the imaging requirements of high resolution and wide FOV, infrared optical systems often adopt complex optical lens groups, which will increase the size and weight of the optical system. In this paper, a strategy based on wavefront coding (WFC) is proposed to design a compact wide-FOV infrared imager. A cubic phase mask is inserted into the pupil plane of the infrared imager to correct the aberration. The simulated results show that, the WFC infrared imager has good imaging quality in a wide FOV of ±16°. In addition, the WFC infrared imager achieves compactness with its 40 mm×40 mm×40 mm size. A fast focal ratio of 1 combined with an entrance pupil diameter of 25 mm ensures brightness. This work is of significance for designing a compact wide-FOV infrared imager.
Keywords:  optical design      infrared imager      wavefront coding  
Received:  08 May 2025      Revised:  02 July 2025      Accepted manuscript online:  16 July 2025
PACS:  42.30.-d (Imaging and optical processing)  
  42.15.Fr (Aberrations)  
  95.85.Hp (Infrared (3-10 μm))  
  42.30.Va (Image forming and processing)  

Cite this article: 

Chonghui Zhu(朱崇辉), Jiaqian Yu(于佳倩), and Jingang Cui(崔金刚) Design of a compact wide-field-of-view infrared imager based on wavefront coding 2026 Chin. Phys. B 35 024202

[1] Ye J F, Yu J, Song Z Z, Pei S X, Yuan Q, Gao Z S and He Y 2019 J. Mod. Opt. 66 304
[2] Li Q Y, Zhang Y, Yan S Y, Zhang B and Wang C H 2022 Chin. Phys. B 31 074201
[3] Wu Q, Zhang S S, Liao W X, Xu W B, Wang T S, Zhang H X and Shi C Y 2022 Opt. Express 30 45143
[4] Shearer A, Hauke B, Montazerian M and Mauro J C 2023 Optical Materials: X 20 100258
[5] Khatri N, Berwal S, Singh B, Tewary S, Manjunath K and Goel S 2025 J. Manuf. Processes 142 468
[6] Dowski E R and Cathey W T 1995 Appl. Opt. 34 1859
[7] Colburn S, Zhan A and Majumdar A 2018 Sci. Adv. 4 eaar2114
[8] Yu J Q, Chen S Q, Dang F Y, Li X S, Shi X T, Ju L, Wang H, Xu X M and Fan Z G 2020 Opt. Commun. 463 125121
[9] Ma L F, Du S, Chang J, ChenWL, Wu C H, Shi X X, Huang Y, Zhong Y and Mu Q Q 2023 Chin. Phys. B 32 084201
[10] Feng B, Shi Z L, Chang Z, Liu H Z and Zhao Y H 2017 Infrared Phys. Technol. 85 157
[11] Zhou J, Chen S Q, Zhen Z, OuWand Xiong J 2020 Infrared and Laser Engineering 49 0404001 (in Chinese)
[12] Wang W, Zhang L H and Fu T W 2023 Laser Optoelectron. Prog. 60 1011005 (in Chinese)
[13] Zhao H and Li Y C 2010 Opt. Lett. 35 2630
[14] Le V N, Chen S Q and Fan Z G 2014 Opt. Lett. 39 2171
[15] Zhu L N, Li F, Huang Z Y and Zhao T Y 2022 Chin. Phys. B 31 054217
[16] Bradburn S, Cathey W T and Dowski E R 1997 Appl. Opt. 36 9157
[17] Smith W 2000 Modern Optical Engineering: The Design of Optical Systems (New York: McGraw-Hill Companies) pp. 151-153
[18] Yu J Q, Chen S Q, Dang F Y, Li X S, Shi X T, Wang H and Fan Z G 2021 Opt. Commun. 490 126876
[19] Wang Y, Xie X F, Zhang L and Yang J 2015 Laser & Infrared 45 1277
[20] Qiao C, Li D, Guo Y, Liu C, Jiang T, Dai Q and Li D 2021 Nat. Methods 18 194
[21] Yang J Q, Peng Q Q, Liu L, Li R G and Sun C F 2017 Laser & Infrared 47 225
[1] An apodized cubic phase mask used in a wavefront coding system to extend the depth of field
Lina Zhu(朱丽娜), Fei Li(李飞), Zeyu Huang(黄泽宇), and Tingyu Zhao(赵廷玉). Chin. Phys. B, 2022, 31(5): 054217.
[2] Optical design of common-aperture multispectral and polarization optical imaging system with wide field of view
Xin Liu(刘鑫), Jun Chang(常军), Shuai Feng(冯帅), Yu Mu(穆郁), Xia Wang(王霞), Zhao-Peng Xu(徐兆鹏). Chin. Phys. B, 2019, 28(8): 084201.
[3] Anti-detection technology of cat eye target based on decentered field lens
Da-Lin Song(宋大林), Jun Chang(常军), Yi-Fei Zhao(赵一菲), Ze-Xia Zhang(张泽霞). Chin. Phys. B, 2018, 27(9): 094220.
[4] Aberration correction of conformal dome based on rotated cylindrical lenses for ultra-wide field of regard
Linyao Yu(虞林瑶), Yongfeng Hong(洪永丰), Zhifeng Cheng(程志峰), Bao Zhang(张保). Chin. Phys. B, 2018, 27(1): 014202.
[5] Application of optical diffraction method in designing phase plates
Ze-Min Lei(雷泽民), Xiao-Yan Sun(孙晓艳), Feng-Nian Lv(吕凤年), Zhen Zhang(张臻), Xing-Qiang Lu(卢兴强). Chin. Phys. B, 2016, 25(11): 114201.
[6] General design basis for a final optics assembly to decrease filamentary damage
Sun Xiao-Yan (孙晓艳), Lu Xing-Qiang (卢兴强), Lü Feng-Nian (吕凤年), Zhang Guo-Wen (张国文), Zhang Zhen (张臻), Yin Xian-Hua (尹宪华), Fan Dian-Yuan (范滇元). Chin. Phys. B, 2015, 24(5): 054209.
[7] Optical transfer function analysis of circular-pupil wavefront coding systems with separable phase masks
Zhao Ting-Yu(赵廷玉), Liu Qin-Xiao(刘钦晓), and Yu Fei-Hong(余飞鸿) . Chin. Phys. B, 2012, 21(6): 064203.
[8] Optical design of adjustable light emitting diode for different lighting requirements
Lu Jia-Ning (芦佳宁), Yu Jie (余杰), Tong Yu-Zhen (童玉珍), Zhang Guo-Yi (张国义). Chin. Phys. B, 2012, 21(12): 127105.
[9] Correcting dynamic residual aberrations of conformal optical systems using AO technology
Li Yan(李岩), Li Lin(李林), Huang Yi-Fan (黄一帆), and Du Bao-Lin(杜保林). Chin. Phys. B, 2009, 18(7): 2769-2773.
[10] Study on the design and Zernike aberrations of a segmented mirror telescope
Jiang Zhen-Yu(姜震宇), Li Lin(李林), and Huang Yi-Fan(黄一帆). Chin. Phys. B, 2009, 18(7): 2774-2778.
[11] Thin film design for advanced thermochromic smart radiator devices
Feng Yu-Dong(冯煜东), Wang Zhi-Min(王志民), Ma Ya-Li(马亚莉), and Zhang Fu-Jia(张福甲). Chin. Phys. B, 2007, 16(6): 1704-1709.
No Suggested Reading articles found!